首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exploration of animal migration has entered a new era with individual-based tracking during multiple years. Here, we investigated repeated migratory journeys of a long-distance migrating bird, the marsh harrier Circus aeruginosus, in order to analyse the variation within and between individuals with respect to routes and timing. We found that there was a stronger individual repeatability in time than in space. Thus, the annual timing of migration varied much less between repeated journeys of the same individual than between different individuals, while there was considerable variation in the routes of the same individual on repeated journeys. The overall contrast in repeatability between time and space was unexpected and may be owing to strong endogenous control of timing, while short-term variation in environmental conditions (weather and habitat) might promote route flexibility. The individual variation in migration routes indicates that the birds navigate mainly by other means than detailed route recapitulation based on landmark recognition.  相似文献   

2.
For migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre- and post-breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.  相似文献   

3.
Thorup K  Tøttrup AP  Rahbek C 《Oecologia》2007,151(4):697-703
The phenology of avian migration appears to be changing in response to climate change. Seemingly contradictory differences in the timing of these annual cycles have been reported in published studies. We show that differences between studies in the choice of songbird species, as well as in the measurements of migration phenology, can explain most of the reported differences. Furthermore, while earlier spring arrival is evident across these studies, trends in timing of departure show large variation between species and according to individual timing of migration (early-arriving vs. late-departing individuals). Much of the variation in departure between species could be explained by each species’ migratory status. We present a detailed analysis of migrants recorded at a Danish migration site, and reveal that although shifts in migration timing can be demonstrated for almost all species, these shifts are either most pronounced in the early arriving/late departing individuals or the changes are similar. Thus most individuals do not seem to change their breeding-area residence time (BART). As BART is likely to reflect ecologically important factors, e.g. number of clutches, we expect that only small effects have been exerted on the breeding ecology of the studied species in the time period investigated. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

4.
Weather conditions are paramount in shaping birds’ migratory routes, promoting the evolution of behavioural plasticity and allowing for adaptive decisions on when to depart or stop during migration. Here, we describe and analyze the influence of weather conditions in shaping the sea-crossing stage of the pre-breeding journey made by a long-distance migratory bird, the Eleonora’s falcon (Falco eleonorae), tracked by satellite telemetry from the wintering grounds in the Southern Hemisphere to the breeding sites in the Northern Hemisphere. As far as we know, the data presented here are the first report of repeated oceanic journeys of the same individuals in consecutive years. Our results show inter-annual variability in the routes followed by Eleonora’s falcons when crossing the Strait of Mozambique, between Madagascar and eastern continental Africa. Interestingly, our observations illustrate that individuals show high behavioural plasticity and are able to change their migration route from one year to another in response to weather conditions, thus minimising the risk of long ocean crossing by selecting winds blowing towards Africa for departure and changing the routes to avoid low pressure areas en route. Our results suggest that weather conditions can really act as obstacles during migration, and thus, besides ecological barriers, the migratory behaviour of birds could also be shaped by “meteorological barriers”. We briefly discuss orientation mechanisms used for navigation. Since environmental conditions during migration could cause carry-over effects, we consider that forecasting how global changes of weather patterns will shape the behaviour of migratory birds is of the utmost importance.  相似文献   

5.
For migratory animals, conditions during the nonbreeding period may carry-over to influence spring migration performance. Animals in low-quality habitats are predicted to be in poorer condition, show later migration timing, and travel at slower speeds. This can result in subsequent negative effects on fitness. We tested the hypothesis that nonbreeding season body condition and habitat quality carry-over to affect spring migration performance of a long-distance migratory songbird, the Wood Thrush (Hylocichla mustelina). We tracked individual birds between multiple breeding sites in North America and nonbreeding sites in Central America. First, we compared body condition of nonbreeding birds migrating to the same general region of the breeding range with spring migration performance (timing, speed, and duration) obtained from light-level geolocators. Second, we assessed the Normalized Difference Vegetation Index (NDVI) as a proxy for nonbreeding habitat quality, and predicted that birds from wetter habitat or in wetter years (higher NDVI) would show improved migration performance relative to birds from drier sites. We found no evidence of individual-level carry-over effects of nonbreeding season body condition on spring migration performance. Lower NDVI of nonbreeding habitat resulted in delayed spring migration departure, but this effect disappeared by arrival at breeding sites. Birds occupying drier nonbreeding sites migrated faster and for fewer days, compensating for their relatively late departure. We also documented a broader pattern in NDVI and migration timing and distance, in that birds that occupied the wettest areas in the southern part of the nonbreeding range departed significantly later and migrated farther. Our results suggest that individual carry-over effects of nonbreeding habitat quality may be compensated for by a faster and shorter migration strategy. At a broad scale, consistently later spring timing and longer migration distances were associated with the wettest areas (the highest quality habitats) of the Wood Thrush non-breeding range. This supports the theory that high-quality habitats offset the costs of farther migration, resulting in a leap-frog migration pattern.  相似文献   

6.
Climate change is affecting behaviour and phenology in many animals. In migratory birds, weather patterns both at breeding and at non-breeding sites can influence the timing of spring migration and breeding. However, variation in responses to weather across a species range has rarely been studied, particularly among populations that may winter in different locations. We used prior knowledge of migratory connectivity to test the influence of weather from predicted non-breeding sites on bird phenology in two breeding populations of a long-distance migratory bird species separated by 3,000 km. We found that winter rainfall showed similar associations with arrival and egg-laying dates in separate breeding populations on an east–west axis: greater rainfall in Jamaica and eastern Mexico was generally associated with advanced American redstart (Setophaga ruticilla) phenology in Ontario and Alberta, respectively. In Ontario, these patterns of response could largely be explained by changes in the behaviour of individual birds, i.e., phenotypic plasticity. By explicitly incorporating migratory connectivity into responses to climate, our data suggest that widely separated breeding populations can show independent and geographically specific associations with changing weather conditions. The tendency of individuals to delay migration and breeding following dry winters could result in population declines due to predicted drying trends in tropical areas and the tight linkage between early arrival/breeding and reproductive success in long-distance migrants.  相似文献   

7.
Identifying an organism's migratory strategies and routes has important implications for conservation. For most species of European ducks, information on the general course of migration, revealed by ringing recoveries, is available, whereas tracking data on migratory movements are limited to the largest species. In the present paper, we report the results of a tracking study on 29 Eurasian Teals, the smallest European duck, captured during the wintering period at three Italian sites. The departure date of spring migration was determined for 21 individuals, and for 15 the entire spring migratory route was reconstructed. Most ducks departed from wintering grounds between mid‐February and March following straight and direct routes along the Black Sea‐Mediterranean flyway. The breeding sites, usually reached by May, were spread from central to north‐Eastern Europe to east of the Urals. The migratory speed was slow (approximately 36 km/day on average) because most birds stopped for several weeks at stopover sites, mainly in south‐eastern Europe, especially at the very beginning of migration. The active flight migration segments were covered at much higher speeds, up to 872 km/day. Stopover duration tended to be shorter when birds were closer to their breeding site. These results, based on the largest satellite tracking effort for this species, revealed for the first time the main features of the migratory strategies of individual Teals wintering in Europe, such as the migration timing and speed and stopover localization and duration.  相似文献   

8.
In migratory songbirds, older individuals are thought to be more efficient migrants than younger individuals. Age‐specific differences in migratory efficiency have been reported mainly in respect of arrival timing, energy stores, rate of energy accumulation, departure behaviour, and departure direction. Yet, these traits were rarely assessed simultaneously in a single species. We further lack information whether age‐specific differences in behavioural traits present in autumn still manifest to the same degree in spring. Here we used the northern wheatear Oenanthe oenanthe, a long‐distance nocturnal songbird migrant, and investigated age‐specific differences in energy stores at capture (autumn: 1059 birds/spring: 803 birds), rate of energy accumulation (168/147), nocturnal departure timing (126/105), and departure direction (94/77) for both seasons. We found that in autumn, young northern wheatears departed significantly later in the night than older birds. This difference was not observed in spring. The resulting advance in nocturnal departure timing by young birds from autumn to spring may be due to learning based on experience gained during autumn, and/or to selective disappearance of those young individuals showing late departure times during autumn. We found no age‐specific difference in any of the other migratory traits investigated. To get a better understanding of age effects in songbird migrants, we need to study the potential adjustments of migratory behaviour within the individual over its life time. By individually tracking songbirds throughout their lifetime, we could start estimating whether a certain migratory decision (fuelling, departure, orientation) translates into higher (or lower) fitness, and whether individuals adjust their migratory behaviour based on learning from ‘wrong decisions’.  相似文献   

9.
Migration is adaptive if survival benefits are larger than costs of residency. Many aspects of bat migration ecology such as migratory costs, stopover site use and fidelity are largely unknown. Since many migrating bats are endangered, such information is urgently needed to promote conservation. We selected the migrating Leisler''s bat (Nyctalus leisleri) as model species and collected capture-recapture data in southern Switzerland year round during 6 years. We estimated seasonal survival and site fidelity with Cormack-Jolly-Seber models that accounted for the presence of transients fitted with Bayesian methods and assessed differences between sexes and seasons. Activity peaked in autumn and spring, whereas very few individuals were caught during summer. We hypothesize that the study site is a migratory stopover site used during fall and spring migration for most individuals, but there is also evidence for wintering. Additionally, we found strong clues for mating during fall. Summer survival that included two major migratory journeys was identical to winter survival in males and slightly higher in females, suggesting that the migratory journeys did not bear significant costs in terms of survival. Transience probability was in both seasons higher in males than in females. Our results suggest that, similarly to birds, Leisler''s bat also use stopover sites during migration with high site fidelity. In contrast to most birds, the stopover site was also used for mating and migratory costs in terms of survival seemed to be low. Transients'' analyses highlighted strong individual variation in site use which makes particularly challenging the study and modelling of their populations as well as their conservation.  相似文献   

10.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   

11.
An important issue in migration research is how small‐bodied passerines pass over vast geographical barriers; in European–African avian migration, these are represented by the Mediterranean Sea and the Sahara Desert. Eastern (passing eastern Mediterranean), central (passing Apennine Peninsula) and western (via western Mediterranean) major migration flyways are distinguished for European migratory birds. The autumn and spring migration routes may differ (loop migration) and there could be a certain level of individual flexibility in how individuals navigate themselves during a single migration cycle. We used light‐level loggers to map migration routes of barn swallows Hirundo rustica breeding in the centre of a wide putative contact zone between the northeastern and southernwestern European populations that differ in migration flyways utilised and wintering grounds. Our data documented high variation in migration patterns and wintering sites of tracked birds (n = 19 individuals) from a single breeding colony, with evidence for loop migration in all but one of the tracked swallows. In general, two migratory strategies were distinguished. In the first, birds wintering in a belt stretching from southcentral to southern Africa that used an eastern route for both the spring and autumn migration, then shifted their spring migration eastwards (anti‐clockwise loops, n = 12). In the second, birds used an eastern or central route to their wintering grounds in central Africa, shifting the spring migration route westward (clockwise loops, n = 7). In addition, we observed an extremely wide clockwise loop migration encompassing the entire Mediterranean, with one individual utilising both the eastern (autumn) and western (spring) migratory flyway during a single annual migration cycle. Further investigation is needed to ascertain whether clockwise migratory loops encircling the entire Mediterranean also occur other small long‐distance passerine species.  相似文献   

12.
Migratory connectivity can have important consequences for individuals, populations and communities. We argue that most consequences not only depend on which sites are used but importantly also on when these are used and suggest that the timing of migration is characterised by synchrony, phenology, and consistency. We illustrate the importance of these aspects of timing for shaping the consequences of migratory connectivity on individual fitness, population dynamics, gene flow and community dynamics using examples from throughout the animal kingdom. Exemplarily for one specific process that is shaped by migratory connectivity and the timing of migration – the transmission of parasites and the dynamics of diseases – we underpin our arguments with a dynamic epidemiological network model of a migratory population. Here, we quantitatively demonstrate that variations in migration phenology and synchrony yield disease dynamics that significantly differ from a time‐neglecting case. Extending the original definition of migratory connectivity into a spatio‐temporal concept can importantly contribute to understanding the links migratory animals make across the globe and the consequences these may have both for the dynamics of their populations and the communities they visit throughout their journeys. Synthesis Migratory connectivity quantifies the links migrant animals make across the globe and these can have manifold consequences – from individual fitness, population dynamics, gene flow to transmission of pathogens and parasites. We show through the use of empirical examples and a conceptual model that these consequences not only depend on which sites are used but importantly also on when these are used. Therefore, we specify three dimensions of migration timing – phenology, synchrony and consistency, which describe the timing of migration 1) relative to development of key resources; 2) relative to the migration of other individuals; and 3) relative to previous migration events. Each of these dimensions can alter the consequences, but typically through different mechanisms.  相似文献   

13.
Population-scale drivers of individual arrival times in migratory birds   总被引:2,自引:1,他引:1  
1. In migratory species, early arrival on the breeding grounds can often enhance breeding success. Timing of spring migration is therefore a key process that is likely to be influenced both by factors specific to individuals, such as the quality of winter and breeding locations and the distance between them, and by annual variation in weather conditions before and during migration. 2. The Icelandic black-tailed godwit Limosa limosa islandica population is currently increasing and, throughout Iceland, is expanding into poorer quality breeding areas. Using a unique data set of arrival times in Iceland in different years for individuals of known breeding and wintering locations, we show that individuals breeding in lower quality, recently occupied and colder areas arrive later than those from traditionally occupied areas. The population is also expanding into new wintering areas, and males from traditionally occupied winter sites also arrive earlier than those occupying novel sites. 3. Annual variation in timing of migration of individuals is influenced by large-scale weather systems (the North Atlantic Oscillation), but between-individual variation is a stronger predictor of arrival time than the NAO. Distance between winter and breeding sites does not influence arrival times. 4. Annual variation in timing of migration is therefore influenced by climatic factors, but the pattern of individual arrival is primarily related to breeding and winter habitat quality. These habitat effects on arrival patterns are likely to operate through variation in individual condition and local-scale density-dependent processes. Timing of migration thus appears to be a key component of the intricate relationship between wintering and breeding grounds in this migratory system.  相似文献   

14.
1.?Phenotypic plasticity, the response of individual phenotypes to their environment, can allow organisms to cope with spatio-temporal variation in environmental conditions. Recent studies have shown that variation exists among individuals in their capacity to adjust their traits to environmental changes and that this individual plasticity can be under strong selection. Yet, little is known on the extent and ultimate causes of variation between populations and individuals in plasticity patterns. 2.?In passerines, timing of breeding is a key life-history trait strongly related to fitness and is known to vary with the environment, but few studies have investigated the within-species variation in individual plasticity. 3.?Here, we studied between- and within-population variation in breeding time, phenotypic plasticity and selection patterns for this trait in four Mediterranean populations of blue tits (Cyanistes caeruleus) breeding in habitats varying in structure and quality. 4.?Although there was no significant warming over the course of the study, we found evidence for earlier onset of breeding in warmer years in all populations, with reduced plasticity in the less predictable environment. In two of four populations, there was significant inter-individual variation in plasticity for laying date. Interestingly, selection for earlier laying date was significant only in populations where there was no inter-individual differences in plasticity. 5.?Our results show that generalization of plasticity patterns among populations of the same species might be challenging even at a small spatial scale and that the amount of within-individual variation in phenotypic plasticity may be linked to selective pressures acting on these phenotypic traits.  相似文献   

15.
For many migratory bird species, the latitudinal range of the winter distribution spans thousands of kilometres, thus encompassing considerable variation in individual migration distances. Pressure to winter near breeding areas is thought to be a strong driver of the evolution of migration patterns, as individuals undertaking a shorter migration are generally considered to benefit from earlier arrival on the breeding grounds. However, the influence of migration distance on timing of arrival is difficult to quantify because of the large scales over which individuals must be tracked. Using a unique dataset of individually‐marked Icelandic black‐tailed godwits Limosa limosa islandica tracked throughout the migratory range by a network of hundreds of volunteer observers, we quantify the consequences of migrating different distances for the use of stop‐over sites and timing of arrival in Iceland. Modelling of potential flight distances and tracking of individuals from across the winter range shows that individuals wintering further from the breeding grounds must undertake a stop‐over during spring migration. However, despite travelling twice the distance and undertaking a stop‐over, individuals wintering furthest from the breeding grounds are able to overtake their conspecifics on spring migration and arrive earlier in Iceland. Wintering further from the breeding grounds can therefore be advantageous in migratory species, even when this requires the use of stop‐over sites which lengthen the migratory journey. As early arrival on breeding sites confers advantages for breeding success, the capacity of longer distance migrants to overtake conspecifics is likely to influence the fitness consequences of individual migration strategies. Variation in the quality of wintering and stopover sites throughout the range can therefore outweigh the benefits of wintering close to the breeding grounds, and may be a primary driver of the evolution of specific migration routes and patterns.  相似文献   

16.
Arctic waders often build up large fat loads and complete their migratory journeys by a few long-distance flights between traditional staging sites. Optimal fat loads and choices of staging sites differ depending on whether the birds are adapted to minimize energy or time spent on migration. In the latter case, we predict that the birds will depart for the next staging site when the instantaneous speed of migration expected after arrival at the next site, exceeds the corresponding speed at the departure site. The instantaneous migration speed is a function of the rate of fat deposition and the current fat load. As a consequence of this, overloading (birds deposit larger fat loads than needed merely for covering the flight distance to the next destination) and by-passing of possible, but low-quality staging sites, are expected under specific conditions in time-selected migration.
Estimates of fat deposition rates and departure fat loads were obtained by captures of Knots Calidris canutus , Sanderlings C. alba and Turnstones Arenaria interpres in W. Iceland during spring migration. Further fat deposition data referring to spring migration of these species were compiled from the literature. Fat deposition rates at different sites, as measured by the daily gain in mass relative to lean body-mass, range between 1.0 and 3.6%/day, and departure fuel loads (in % of lean body-mass) between 27 and 73%.
Comparison with flight range estimates suggests that overloading may be a regular phenomenon during spring migration of Knots, Sanderlings and Turnstones. Furthermore, fat deposition rates at different staging sites, and the general difference in migration patterns between spring and autumn, indicate that by-passing of possible staging sites may well occur. Hence, it cannot be excluded that the waders' migratory habits primarily serve to maximize the overall speed of migration.  相似文献   

17.
Migratory birds are often faithful to wintering (nonbreeding) sites, and also migration timing is usually remarkably consistent, that is, highly repeatable. Spatiotemporal repeatability can be of advantage for multiple reasons, including familiarity with local resources and predators as well as avoiding the costs of finding a new place, for example, nesting grounds. However, when the environment is variable in space and time, variable site selection and timing might be more rewarding. To date, studies on spatial and temporal repeatability in short‐lived long‐distance migrants are scarce, most notably of first‐time and subsequent migrations. Here, we investigated repeatability in autumn migration directions, wintering sites, and annual migration timing in Hoopoes (Upupa epops), a long‐distance migrant, using repeated tracks of adult and first‐time migrants. Even though autumn migration directions were mostly the same, individual wintering sites often changed from year to year with distances between wintering sites exceeding 1,000 km. The timing of migration was repeatable within an individual during autumn, but not during spring migration. We suggest that Hoopoes respond to variable environmental conditions such as north–south shifts in rainfall during winter and differing onset of the food availability during spring migration.  相似文献   

18.
Recent advances in spring arrival dates have been reported in many migratory species but the mechanism driving these advances is unknown. As population declines are most widely reported in species that are not advancing migration, there is an urgent need to identify the mechanisms facilitating and constraining these advances. Individual plasticity in timing of migration in response to changing climatic conditions is commonly proposed to drive these advances but plasticity in individual migratory timings is rarely observed. For a shorebird population that has significantly advanced migration in recent decades, we show that individual arrival dates are highly consistent between years, but that the arrival dates of new recruits to the population are significantly earlier now than in previous years. Several mechanisms could drive advances in recruit arrival, none of which require individual plasticity or rapid evolution of migration timings. In particular, advances in nest-laying dates could result in advanced recruit arrival, if benefits of early hatching facilitate early subsequent spring migration. This mechanism could also explain why arrival dates of short-distance migrants, which generally return to breeding sites earlier and have greater scope for advance laying, are advancing more rapidly than long-distance migrants.  相似文献   

19.
The importance of understanding the geographic distribution of the full annual cycle of migratory birds has been increasingly highlighted over the past several decades. However, the difficulty of tracking small birds between breeding and wintering areas has hindered progress in this area. To learn more about Kirtland's warbler Setophaga kirtlandii movement patterns throughout the annual cycle, we deployed archival light‐level geolocators across their breeding range in Michigan. We recovered devices from 27 males and analyzed light‐level data within a Bayesian framework. We found that most males wintered in the central Bahamas and exhibited a loop migration pattern. In both fall and spring, departure date was the strongest predictor of arrival date, but in spring, stopover duration and migration distance were also important. Though stopover strategies varied, males spent the majority of their spring migration at stopover sites, several of which were located just before or after large ecological barriers. We argue that loop migration is likely a response to seasonal variation in prevailing winds. By documenting a tight link between spring departure and arrival dates, we provide a plausible mechanism for previously documented carry‐over effects of winter rainfall on reproductive success in this species. The migratory periods remain the least understood periods for all birds, but by describing Kirtland's warbler migration routes and timing, and identifying locations of stopover sites, we have begun the process of better understanding the dynamics of their full annual cycle. Moreover, we have provided managers with valuable information on which to base future conservation and research priorities.  相似文献   

20.
1.?Climate change has been associated with shifts in the timing of biological events, including the spring arrival of migratory birds. Early arrival at breeding sites is an important life-history trait, usually associated with higher breeding success and therefore, susceptible to selection and evolution in response to changing climatic conditions. 2.?Here, we examine the effect of changes in the environmental conditions of wintering and passage areas on the mean passage time of 13 trans-Saharan passerines during their spring migration through the western Mediterranean over the 15 years from 1993 to 2007. 3.?We found that most of the species studied have been advancing the timing of their passage in recent years. However, annual variation in the mean date of passage was positively correlated with vegetation growth (measured as the normalized difference vegetation index [NDVI]) both in the Sahel (the region of departure) and in northern Africa (the passage area). Thus, migration dates were delayed in years with high primary productivity in passage and wintering zones. All species seem to respond similarly to NDVI in the Sahel; however, late migrants were less affected by ecological conditions in northern Africa than those migrating earlier, suggesting differences based on species ecology. 4.?Mean timing of passage was not related to the North Atlantic Oscillation (NAO), El Ni?o-Southern Oscillation (ENSO), temperature or NDVI in the species-specific wintering areas (the overwintering region) when analysed in combination with the other covariates. 5.?Our findings show that ecological conditions in the winter quarters (specifically the Sahel) and en route are relevant factors influencing trends in the passage dates of trans-Saharan migratory birds on the southern fringe of Europe. Possible long-term consequences for late arriving spring migrants are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号