首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The combination of tandem mass spectrometry and sequence database searching is the method of choice for the identification of peptides and the mapping of proteomes. Over the last several years, the volume of data generated in proteomic studies has increased dramatically, which challenges the computational approaches previously developed for these data. Furthermore, a multitude of search engines have been developed that identify different, overlapping subsets of the sample peptides from a particular set of tandem mass spectrometry spectra. We present iProphet, the new addition to the widely used open-source suite of proteomic data analysis tools Trans-Proteomics Pipeline. Applied in tandem with PeptideProphet, it provides more accurate representation of the multilevel nature of shotgun proteomic data. iProphet combines the evidence from multiple identifications of the same peptide sequences across different spectra, experiments, precursor ion charge states, and modified states. It also allows accurate and effective integration of the results from multiple database search engines applied to the same data. The use of iProphet in the Trans-Proteomics Pipeline increases the number of correctly identified peptides at a constant false discovery rate as compared with both PeptideProphet and another state-of-the-art tool Percolator. As the main outcome, iProphet permits the calculation of accurate posterior probabilities and false discovery rate estimates at the level of sequence identical peptide identifications, which in turn leads to more accurate probability estimates at the protein level. Fully integrated with the Trans-Proteomics Pipeline, it supports all commonly used MS instruments, search engines, and computer platforms. The performance of iProphet is demonstrated on two publicly available data sets: data from a human whole cell lysate proteome profiling experiment representative of typical proteomic data sets, and from a set of Streptococcus pyogenes experiments more representative of organism-specific composite data sets.  相似文献   

2.
Discovery of novel antigens associated with infectious diseases is fundamental to the development of serodiagnostic tests and protein subunit vaccines against existing and emerging pathogens. Efforts to predict antigenicity have relied on a few computational algorithms predicting signal peptide sequences (SignalP), transmembrane domains, or subcellular localization (pSort). An empirical protein microarray approach was developed to scan the entire proteome of any infectious microorganism and empirically determine immunoglobulin reactivity against all the antigens from a microorganism in infected individuals. The current database from this activity contains quantitative antibody reactivity data against 35,000 proteins derived from 25 infectious microorganisms and more than 30 million data points derived from 15,000 patient sera. Interrogation of these data sets has revealed ten proteomic features that are associated with antigenicity, allowing an in silico protein sequence and functional annotation based approach to triage the least likely antigenic proteins from those that are more likely to be antigenic. The first iteration of this approach applied to Brucella melitensis predicted 37% of the bacterial proteome containing 91% of the antigens empirically identified by probing proteome microarrays. In this study, we describe a na?ve Bayes classification approach that can be used to assign a relative score to the likelihood that an antigen will be immunoreactive and serodiagnostic in a bacterial proteome. This algorithm predicted 20% of the B. melitensis proteome including 91% of the serodiagnostic antigens, a nearly twofold improvement in specificity of the predictor. These results give us confidence that further development of this approach will lead to further improvements in the sensitivity and specificity of this in silico predictive algorithm.  相似文献   

3.
4.
We have developed a proteome database (DB), BiomarkerDigger ( http://biomarkerdigger.org ) that automates data analysis, searching, and metadata‐gathering function. The metadata‐gathering function searches proteome DBs for protein–protein interaction, Gene Ontology, protein domain, Online Mendelian Inheritance in Man, and tissue expression profile information and integrates it into protein data sets that are accessed through a search function in BiomarkerDigger. This DB also facilitates cross‐proteome comparisons by classifying proteins based on their annotation. BiomarkerDigger highlights relationships between a given protein in a proteomic data set and any known biomarkers or biomarker candidates. The newly developed BiomarkerDigger system is useful for multi‐level synthesis, comparison, and analyses of data sets obtained from currently available web sources. We demonstrate the application of this resource to the identification of a serological biomarker for hepatocellular carcinoma by comparison of plasma and tissue proteomic data sets from healthy volunteers and cancer patients.  相似文献   

5.
As proteomic data sets increase in size and complexity, the necessity for database‐centric software systems able to organize, compare, and visualize all the proteomic experiments in a lab grows. We recently developed an integrated platform called high‐throughput autonomous proteomic pipeline (HTAPP) for the automated acquisition and processing of quantitative proteomic data, and integration of proteomic results with existing external protein information resources within a lab‐based relational database called PeptideDepot. Here, we introduce the peptide validation software component of this system, which combines relational database‐integrated electronic manual spectral annotation in Java with a new software tool in the R programming language for the generation of logistic regression spectral models from user‐supplied validated data sets and flexible application of these user‐generated models in automated proteomic workflows. This logistic regression spectral model uses both variables computed directly from SEQUEST output in addition to deterministic variables based on expert manual validation criteria of spectral quality. In the case of linear quadrupole ion trap (LTQ) or LTQ‐FTICR LC/MS data, our logistic spectral model outperformed both XCorr (242% more peptides identified on average) and the X!Tandem E‐value (87% more peptides identified on average) at a 1% false discovery rate estimated by decoy database approach.  相似文献   

6.
High throughput proteome screening for biomarker detection   总被引:6,自引:0,他引:6  
Mass spectrometry-based quantitative proteomics has become an important component of biological and clinical research. Current methods, while highly developed and powerful, are falling short of their goal of routinely analyzing whole proteomes mainly because the wealth of proteomic information accumulated from prior studies is not used for the planning or interpretation of present experiments. The consequence of this situation is that in every proteomic experiment the proteome is rediscovered. In this report we describe an approach for quantitative proteomics that builds on the extensive prior knowledge of proteomes and a platform for the implementation of the method. The method is based on the selection and chemical synthesis of isotopically labeled reference peptides that uniquely identify a particular protein and the addition of a panel of such peptides to the sample mixture consisting of tryptic peptides from the proteome in question. The platform consists of a peptide separation module for the generation of ordered peptide arrays from the combined peptide sample on the sample plate of a MALDI mass spectrometer, a high throughput MALDI-TOF/TOF mass spectrometer, and a suite of software tools for the selective analysis of the targeted peptides and the interpretation of the results. Applying the method to the analysis of the human blood serum proteome we demonstrate the feasibility of using mass spectrometry-based proteomics as a high throughput screening technology for the detection and quantification of targeted proteins in a complex system.  相似文献   

7.
Human blood plasma can be obtained relatively noninvasively and contains proteins from most, if not all, tissues of the body. Therefore, an extensive, quantitative catalog of plasma proteins is an important starting point for the discovery of disease biomarkers. In 2005, we showed that different proteomics measurements using different sample preparation and analysis techniques identify significantly different sets of proteins, and that a comprehensive plasma proteome can be compiled only by combining data from many different experiments. Applying advanced computational methods developed for the analysis and integration of very large and diverse data sets generated by tandem MS measurements of tryptic peptides, we have now compiled a high-confidence human plasma proteome reference set with well over twice the identified proteins of previous high-confidence sets. It includes a hierarchy of protein identifications at different levels of redundancy following a clearly defined scheme, which we propose as a standard that can be applied to any proteomics data set to facilitate cross-proteome analyses. Further, to aid in development of blood-based diagnostics using techniques such as selected reaction monitoring, we provide a rough estimate of protein concentrations using spectral counting. We identified 20,433 distinct peptides, from which we inferred a highly nonredundant set of 1929 protein sequences at a false discovery rate of 1%. We have made this resource available via PeptideAtlas, a large, multiorganism, publicly accessible compendium of peptides identified in tandem MS experiments conducted by laboratories around the world.  相似文献   

8.
9.
It is expected that the composition of the serum proteome can provide valuable information about the state of the human body in health and disease and that this information can be extracted via quantitative proteomic measurements. Suitable proteomic techniques need to be sensitive, reproducible, and robust to detect potential biomarkers below the level of highly expressed proteins, generate data sets that are comparable between experiments and laboratories, and have high throughput to support statistical studies. Here we report a method for high throughput quantitative analysis of serum proteins. It consists of the selective isolation of peptides that are N-linked glycosylated in the intact protein, the analysis of these now deglycosylated peptides by liquid chromatography electrospray ionization mass spectrometry, and the comparative analysis of the resulting patterns. By focusing selectively on a few formerly N-linked glycopeptides per serum protein, the complexity of the analyte sample is significantly reduced and the sensitivity and throughput of serum proteome analysis are increased compared with the analysis of total tryptic peptides from unfractionated samples. We provide data that document the performance of the method and show that sera from untreated normal mice and genetically identical mice with carcinogen-induced skin cancer can be unambiguously discriminated using unsupervised clustering of the resulting peptide patterns. We further identify, by tandem mass spectrometry, some of the peptides that were consistently elevated in cancer mice compared with their control littermates.  相似文献   

10.
A PCR-based approach to sequencing complete mitochondrial genomes is described along with a set of 86 primers designed primarily for avian mitochondrial DNA (mtDNA). This PCR-based approach allows an accurate determination of complete mtDNA sequences that is faster than sequencing cloned mtDNA. The primers are spaced at about 500-base intervals along both DNA strands. Many of the primers incorporate degenerate positions to accommodate variation in mtDNA sequence among avian taxa and to reduce the potential for preferential amplification of nuclear pseudogenes. Comparison with published vertebrate mtDNA sequences suggests that many of the primers will have broad taxonomic utility. In addition, these primers should make available a wider variety of mitochondrial genes for studies based on smaller data sets.  相似文献   

11.
Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through MS/MS. Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to various experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker‐driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end‐users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our high throughput autonomous proteomic pipeline used in the automated acquisition and post‐acquisition analysis of proteomic data.  相似文献   

12.
从水稻Ac/Ds插入突变体扩增Ds侧翼序列的最适TAIL-PCR引物   总被引:5,自引:0,他引:5  
温度非对称交互PCR(TAIL-PCR)技术已广泛应用于从多种生物体系克隆侧翼于已知序列的DNA片段的分子操作中,并极大地促进了反向遗传学研究。但是,可能由于不同物种间基因组大小和序列存在显差异,在采用该技术进行转座元件Ds水稻插入突变体鉴定过程中,常因TAIL-PCR反应的稳定性差而影响突变体筛选效率。有鉴于此,根据Ds核苷酸序列设计了分别对应或互补于Ds插入元件两端长度不同的12个特异引物组成32个组合,在大量预试验基础上与6个不同简并性(32~256)的随机简并引物分别组合进行TAIL-PCR反应,较系统地研究了引物特性对以水稻基因组DNA为模板的TAIL-PCR反应效率的影响。结果发现,第一反应采用长序列特异引物(36~40mer)可显提高扩增特异性,随机简并引物的简并度对反应的影响显。还选择出两个适于从水稻Ds插入突变体基因组高效扩增出Ds插入侧翼片段的最优特异引物组合和最适简并引物。应用本研究结果可显地提高TAIL-PCR技术筛选水稻插入突变体的效率。  相似文献   

13.

Background  

Experimental screening of large sets of peptides with respect to their MHC binding capabilities is still very demanding due to the large number of possible peptide sequences and the extensive polymorphism of the MHC proteins. Therefore, there is significant interest in the development of computational methods for predicting the binding capability of peptides to MHC molecules, as a first step towards selecting peptides for actual screening.  相似文献   

14.
Glutathione synthetase (gshB) has previously been reported to confer tolerance to acidic soil condition in Rhizobium species. Cloning the gene coding for this enzyme necessitates the designing of proper primer sets which in turn depends on the identification of high quality sequence similarity in multiple global alignments. In this experiment, a group of homologous gene sequences related to gshB gene (accession no: gi-86355669:327589-328536) of Rhizobium etli CFN 42, were extracted from NCBI nucleotide sequence databases using BLASTN and were analyzed for designing degenerate primers. However, the T-coffee multiple global alignment results did not show any block of conserved region for the above sequence set to design the primers. Therefore, we attempted to identify the location of common motif region based on multiple local alignments employing the MEME algorithm supported with MAST and Primer3. The results revealed some common motif regions that enabled us to design the primer sets for related gshB gene sequences. The result will be validated in wet lab.  相似文献   

15.
Kaga C  Okochi M  Tomita Y  Kato R  Honda H 《BioTechniques》2008,44(3):393-402
We developed a method of effective peptide screening that combines experiments and computational analysis. The method is based on the concept that screening efficiency can be enhanced from even limited data by use of a model derived from computational analysis that serves as a guide to screening and combining the model with subsequent repeated experiments. Here we focus on cell-adhesion peptides as a model application of this peptide-screening strategy. Cell-adhesion peptides were screened by use of a cell-based assay of a peptide array. Starting with the screening data obtained from a limited, random 5-mer library (643 sequences), a rule regarding structural characteristics of cell-adhesion peptides was extracted by fuzzy neural network (FNN) analysis. According to this rule, peptides with unfavored residues in certain positions that led to inefficient binding were eliminated from the random sequences. In the restricted, second random library (273 sequences), the yield of cell-adhesion peptides having an adhesion rate more than 1.5-fold to that of the basal array support was significantly high (31%) compared with the unrestricted random library (20%). In the restricted third library (50 sequences), the yield of cell-adhesion peptides increased to 84%. We conclude that a repeated cycle of experiments screening limited numbers of peptides can be assisted by the rule-extracting feature of FNN.  相似文献   

16.
PriMux is a new software package for selecting multiplex compatible, degenerate primers and probes to detect diverse targets such as viruses. It requires no multiple sequence alignment, instead applying k-mer algorithms, hence it scales well for large target sets and saves user effort from curating sequences into alignable groups. PriMux has the capability to predict degenerate primers as well as probes suitable for TaqMan or other primer/probe triplet assay formats, or simply probes for microarray or other single-oligo assay formats. PriMux employs suffix array methods for efficient calculations on oligos 10-∼100 nt in length. TaqMan® primers and probes for each segment of Rift Valley fever virus were designed using PriMux, and lab testing comparing signatures designed using PriMux versus those designed using traditional methods demonstrated equivalent or better sensitivity for the PriMux-designed signatures compared to traditional signatures. In addition, we used PriMux to design TaqMan® primers and probes for unalignable or poorly alignable groups of targets: that is, all segments of Rift Valley fever virus analyzed as a single target set of 198 sequences, or all 2863 Dengue virus genomes for all four serotypes available at the time of our analysis. The PriMux software is available as open source from http://sourceforge.net/projects/PriMux.  相似文献   

17.
R A Heller  K Song  J Freire-Moar 《BioTechniques》1992,12(1):30, 32, 34-30, 32, 35
The PCR technique can use protein-derived oligonucleotide sequences as primers to develop probes for screening recombinant libraries. Here we report a method with highly degenerate mixtures of oligonucleotides as primers for the PCR that eliminates the need to identify or isolate the DNA sequences derived by PCR. The method uses the pool of PCR-generated DNA sequences radiolabeled during the extension reaction as a probe, combined with highly stringent hybridization and wash conditions that permit only homologous sequences to hybridize and therefore target desired clones. This technique was used successfully to clone the receptor for tumor necrosis factor.  相似文献   

18.
Epithelial ovarian cancer is the most lethal gynecological malignancy, and disease-specific biomarkers are urgently needed to improve diagnosis, prognosis, and to predict and monitor treatment efficiency. We present an in-depth proteomic analysis of selected biochemical fractions of human ovarian cancer ascites, resulting in the stringent and confident identification of over 2500 proteins. Rigorous filter schemes were applied to objectively minimize the number of false-positive identifications, and we only report proteins with substantial peptide evidence. Integrated computational analysis of the ascites proteome combined with several recently published proteomic data sets of human plasma, urine, 59 ovarian cancer related microarray data sets, and protein-protein interactions from the Interologous Interaction Database I (2)D ( http://ophid.utoronto.ca/i2d) resulted in a short-list of 80 putative biomarkers. The presented proteomics analysis provides a significant resource for ovarian cancer research, and a framework for biomarker discovery.  相似文献   

19.
Multiple sequence alignment (MSA) is a crucial first step in the analysis of genomic and proteomic data. Commonly occurring sequence features, such as deletions and insertions, are known to affect the accuracy of MSA programs, but the extent to which alignment accuracy is affected by the positions of insertions and deletions has not been examined independently of other sources of sequence variation. We assessed the performance of 6 popular MSA programs (ClustalW, DIALIGN-T, MAFFT, MUSCLE, PROBCONS, and T-COFFEE) and one experimental program, PRANK, on amino acid sequences that differed only by short regions of deleted residues. The analysis showed that the absence of residues often led to an incorrect placement of gaps in the alignments, even though the sequences were otherwise identical. In data sets containing sequences with partially overlapping deletions, most MSA programs preferentially aligned the gaps vertically at the expense of incorrectly aligning residues in the flanking regions. Of the programs assessed, only DIALIGN-T was able to place overlapping gaps correctly relative to one another, but this was usually context dependent and was observed only in some of the data sets. In data sets containing sequences with non-overlapping deletions, both DIALIGN-T and MAFFT (G-INS-I) were able to align gaps with near-perfect accuracy, but only MAFFT produced the correct alignment consistently. The same was true for data sets that comprised isoforms of alternatively spliced gene products: both DIALIGN-T and MAFFT produced highly accurate alignments, with MAFFT being the more consistent of the 2 programs. Other programs, notably T-COFFEE and ClustalW, were less accurate. For all data sets, alignments produced by different MSA programs differed markedly, indicating that reliance on a single MSA program may give misleading results. It is therefore advisable to use more than one MSA program when dealing with sequences that may contain deletions or insertions, particularly for high-throughput and pipeline applications where manual refinement of each alignment is not practicable.  相似文献   

20.
Secreted proteins are known to play decisive roles in plant–fungus interactions. To study the molecular details of the interaction between the xylem-colonizing, plant-pathogenic fungus Fusarium oxysporum and tomato, the composition of the xylem sap proteome of infected tomato plants was investigated and compared with that of healthy plants. Two-dimensional gel separation and mass spectrometry yielded peptide masses and peptide sequences of 33 different proteins. Despite the absence of complete genome sequences of either tomato or F. oxysporum , 21 proteins were identified as tomato proteins and seven as fungal proteins. Thirteen of the tomato proteins were specific for infected plants. Sixteen tomato proteins were found in xylem sap for the first time, four of which were identified based on matches to expressed sequences only. Coding sequences for new proteins from F. oxysporum were identified through either direct matching to a database sequence, matching of peptide sequences to genome or expressed sequence tag databases of other Fusarium species, or PCR with degenerate primers on cDNA derived from infected plants followed by screening of a F. oxysporum BAC library. Together, these findings provide an excellent basis for further exploration of the interaction between xylem-colonizing pathogens and their hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号