首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel SUN-domain family of nuclear envelope proteins interacts with various KASH-domain partners to form SUN-domain-dependent 'bridges' across the inner and outer nuclear membranes. These bridges physically connect the nucleus to every major component of the cytoskeleton. SUN-domain proteins have diverse roles in nuclear positioning, centrosome localization, germ-cell development, telomere positioning and apoptosis. By serving both as mechanical adaptors and nuclear envelope receptors, we propose that SUN-domain proteins connect cytoplasmic and nucleoplasmic activities.  相似文献   

2.
The spatial separation of mRNA synthesis from translation, while providing eukaryotes with the possibility to achieve higher complexity through a more elaborate regulation of gene expression, has set the need for transport mechanisms through the nuclear envelope. In a simplistic view of nucleocytoplasmic transport, nuclear proteins are imported into the nucleus while RNAs are exported to the cytoplasm. The reality is, however, that transport of either proteins or RNAs across the nuclear envelope can be bi-directional. During the past years, an increasing number of proteins have been identified that shuttle continuously back and forth between the nucleus and the cytoplasm. The emerging picture is that shuttling proteins are key factors in conveying information on nuclear and cytoplasmic activities within the cell.  相似文献   

3.
The nuclear envelope (NE) of the eukaryotic cell provides an essential barrier that separates the nuclear compartment from the cytoplasm. In addition, the NE is involved in essential functions such as nuclear stability, regulation of gene expression, centrosome separation and nuclear migration and positioning. In metazoa the NE breaks down and re-assembles around the segregated chromatids during each cell division. In this review we discuss the molecular constituents of the Caenorhabditis elegans NE and describe their role in post-mitotic NE re-formation, as well as the usefulness of C. elegans as an in vivo system for analyzing NE dynamics.  相似文献   

4.
The nuclear envelope is a complex double membrane system that serves as a dynamic interface between the nuclear and cytoplasmic compartments. Among its many roles is to provide an anchor for gene regulatory proteins on its nucleoplasmic surface and for the cytoskeleton on its cytoplasmic surface. Both sets of anchors are proteins called NETs (nuclear envelope transmembrane proteins), embedded respectively in the inner or outer nuclear membranes. Several lines of evidence indicate that the nuclear envelope contributes to cell-cycle regulation. These contributions come from both inner and outer nuclear membrane NETs and appear to operate through several distinct mechanisms ranging from sequestration of gene-regulatory proteins to activating kinase cascades.  相似文献   

5.
Summary The pancreatic acinar cells of rat embryos obtained at 15, 17, 19 and 21 days of gestation have been examined using fine-structural and morphometric techniques.Morphometric analysis demonstrates significant variations in the average volume of the cell, nucleus and cytoplasm, and the volume, surface and numerical densities of various cytoplasmic organelles during fetal life. In particular, the volume and surface densities of rER exhibit maximal values at 19 days of gestation, suggesting that secretory proteins are produced most actively at this time. Further-more, membrane continuity between the nuclear envelope and rER is frequently discernible in acinar cells, indicating that at this stage the rER is mainly derived from the nuclear envelope. Zymogen granules first appear at 17 days of gesstation. By 21 days, they occupy the greater part of the cytoplasm of the acinar cells, no polarity being seen in their distribution pattern. No direct evidence for the secretion of zymogen granules has been observed during fetal life.It therefore appears that membrane transport involved with intracellular movement of newly synthesized proteins from rER via the Golgi complex to zymogen granules occurs in one direction and lacks regulation.  相似文献   

6.
The cell nucleus is a highly organized structure and plays an important role in gene regulation. Understanding the mechanisms that sustain this organization is therefore essential for understanding genome function. Centromeric regions (CRs) of chromosomes have been known for years to adopt specific nuclear positioning patterns, but the significance of this observation is not yet completely understood. Here, using a combination of fluorescence in situ hybridization and immunochemistry on fixed human cells and high-throughput imaging, we directly and quantitatively investigated the nuclear positioning of specific human CRs. We observe differential attraction of individual CRs toward both the nuclear border and the nucleoli, the former being enhanced in nonproliferating cells and the latter being enhanced in proliferating cells. Similar positioning patterns are observed in two different lymphoblastoid cell lines. Moreover, the positioning of CRs differs from that of noncentromeric regions, and CRs display specific orientations within chromosome territories. These results suggest the existence of not-yet-characterized mechanisms that drive the nuclear positioning of CRs and therefore pave the way toward a better understanding of how CRs affect nuclear organization.  相似文献   

7.
In recent years, both the molecular architecture and functional dynamics of nuclear pore complexes (NPCs) have been revealed with increasing detail. These large, supramolecular assemblages of proteins form channels that span the nuclear envelope of cells, acting as crucial regulators of nuclear import and export. From the cytoplasmic face of the nuclear envelope, nuclear pore complexes exhibit an eightfold symmetric ring structure encompassing a central lumen. The lumen often appears occupied by an additional structure alternatively referred to as the central granule, nuclear transport complex, or nuclear plug. Previous studies have suggested that the central granule may play a role in mediating calcium-dependent regulation of diffusion across the nuclear envelope for intermediate sized molecules (10-40 kDa). Using atomic force microscopy to measure the surface topography of chemically fixed Xenopus laevis oocyte nuclear envelopes, we present measurements of the relative position of the central granule within the NPC lumen under a variety of conditions known to modify nuclear Ca(2+) stores. These measurements reveal a large, approximately 9-nm displacement of the central granule toward the cytoplasmic face of the nuclear envelope under calcium depleting conditions. Additionally, activation of nuclear inositol triphosphate (IP(3)) receptors by the specific agonist, adenophostin A, results in a concentration-dependent displacement of central granule position with an EC(50) of ~1.2 nM. The displacement of the central granule within the NPC is observed on both the cytoplasmic and nucleoplasmic faces of the nuclear envelope. The displacement is blocked upon treatment with xestospongin C, a specific inhibitor of IP(3) receptor activation. These results extend previous models of NPC conformational dynamics linking central granule position to depletion of IP(3) sensitive nuclear envelope calcium stores.  相似文献   

8.
The nuclear envelope and transcriptional control   总被引:9,自引:0,他引:9  
  相似文献   

9.
Nucleus movement, positioning, and orientation is precisely specified and actively regulated within cells, and it plays a critical role in many cellular and developmental processes. Mutation of proteins that regulate the nucleus anchoring and movement lead to diverse pathologies, laminopathies in particular, suggesting that the nucleus correct positioning and movement is essential for proper cellular function. In motile cells that polarize toward the direction of migration, the nucleus undergoes controlled rotation promoting the alignment of the nucleus with the axis of migration. Such spatial organization of the cell appears to be optimal for the cell migration. Nuclear reorientation requires the cytoskeleton to be anchored to the nuclear envelope, which exerts pulling or pushing torque on the nucleus. Here we discuss the possible molecular mechanisms regulating the nuclear rotation and reorientation and the significance of this type of nuclear movement for cell migration.  相似文献   

10.
Nucleus movement, positioning, and orientation is precisely specified and actively regulated within cells, and it plays a critical role in many cellular and developmental processes. Mutation of proteins that regulate the nucleus anchoring and movement lead to diverse pathologies, laminopathies in particular, suggesting that the nucleus correct positioning and movement is essential for proper cellular function. In motile cells that polarize toward the direction of migration, the nucleus undergoes controlled rotation promoting the alignment of the nucleus with the axis of migration. Such spatial organization of the cell appears to be optimal for the cell migration. Nuclear reorientation requires the cytoskeleton to be anchored to the nuclear envelope, which exerts pulling or pushing torque on the nucleus. Here we discuss the possible molecular mechanisms regulating the nuclear rotation and reorientation and the significance of this type of nuclear movement for cell migration.  相似文献   

11.
Transport into and out of the nucleus.   总被引:1,自引:0,他引:1  
I G Macara 《Microbiology and molecular biology reviews》2001,65(4):570-94, table of contents
  相似文献   

12.
核钙信号   总被引:2,自引:0,他引:2  
刘冀珑  卢青  陈大元 《生命科学》2001,13(1):41-44,17
尽管核周隙与内质网的腔相通,核膜上存在钙信号分子的受体等事实表明,细胞核存在一套相对独立的钙信号机制。作为核钙的贮存库,核被是核钙信号的发源地。核被中钙离子的充盈状态影响着核孔复合体的构象,从而调节核质间物质交流。已有证据显示,核钙信号与胞质钙信号在基因转录中的作用有所区别。核钙信号在细胞凋亡中发挥重要作用,其中,钙蛋白酶起着较为关键的作用。核钙信号研究为完整理解钙信号的生理功能开辟了新视野。  相似文献   

13.
The GTPase Ran is a key regulator of molecular transport through nuclear pore complex (NPC) channels. To analyze the role of Ran in its nuclear transport function, we used several quantitative fluorescence techniques to follow the distribution and dynamics of an enhanced yellow fluorescent protein (EYFP)-Ran in HeLa cells. The diffusion coefficient of the majority of EYFP-Ran molecules throughout the cells corresponded to an unbound state, revealing the remarkably dynamic Ran regulation. Although we observed no significant immobile Ran populations in cells, ∼10% of the cytoplasmic EYFP-Ran and 30% of the nuclear EYFP-Ran exhibited low mobility indicative of molecular interactions. The high fraction of slow nuclear EYFP-Ran reflects the expected numerous interactions of nuclear RanGTP with nuclear transport receptors. However, it is not high enough to support retention mechanisms as the main cause for the observed nuclear accumulation of Ran. The highest cellular concentration of EYFP-Ran was detected at the nuclear envelope, corresponding to ∼200 endogenous Ran molecules for each NPC, and exceeding the currently estimated NPC channel transport capacity. Together with the relatively long residence time of EYFP-Ran at the nuclear envelope (33 ± 14 ms), these observations suggest that only a fraction of the Ran concentrated at NPCs transits through NPC channels.  相似文献   

14.
15.
The molecular mechanisms underlying the nuclear entry of steroid receptors and possible regulation of steroid hormone action during receptor passage across the nuclear envelope have not been elucidated. A nuclear localization signal has been identified in the hinge region of the glucocorticoid receptor. A synthetic peptide corresponding to this sequence was radio-iodinated and incubated with high salt- and detergent-extracted rat liver nuclei or nuclear envelope in the presence of crosslinker. After SDS-PAGE, two nuclear polypeptides of 60 and 76 kDa which had been specifically crosslinked were identified by autoradiography. A 60 kDa polypeptide was also crosslinked in the nuclear envelope fraction. ATP and elevated temperatures enhanced the crosslinking of both nuclear peptides. Finally, we showed that the pattern of crosslinking of the simian virus 40 large tumour antigen nuclear localization signal was identical to that of the glucocorticoid receptor signal to the nuclear polypeptides. The crosslinked peptides are good candidates for nuclear importers of the glucocorticoid receptor. In addition, the data suggest that these binding sites may be part of a general mechanism for nuclear entry of proteins.  相似文献   

16.
Like other spectrin repeat proteins, nesprins co-ordinate and maintain cellular architecture by linking membranous organelles to the cytoskeleton. However nuclear envelope (NE) nesprins, uniquely hardwire the nuclear lamina to the cytoskeleton and molecular motors. Emerging evidence suggests that nesprins also form a continuous network linking the plasma membrane to the NE that potentially translates mechanical stimuli into nuclear reorganisation. Surprisingly, this network is also essential for cytoskeletal organisation and its disruption has dramatic effects on nuclear migration, centrosomal positioning, focal adhesion maturation and cell motility. Herein we review recent advances in our understanding of how nesprins couple to various filamentous systems within the cell and emphasise the importance of both KASH and KASH-less nesprin isoforms in these interactions.  相似文献   

17.
Electron micrograph evidence is presented that the nuclear envelope of the mature ovum of Dendraster excentricus is implicated in a proliferation of what appear as nuclear envelope replicas in the cytoplasm. The proliferation is associated with intranuclear vesicles which apparently coalesce to form comparatively simple replicas of the nuclear envelope closely applied to the inside of the nuclear envelope. The envelope itself may become disorganized at the time when fully formed annulate lamellae appear on the cytoplasmic side and parallel with it. The concept of interconvertibility of general cytoplasmic vesicles with most of the membrane systems of the cytoplasm is presented. The structure of the annuli in the annulate lamellae is shown to include small spheres or vesicles of variable size embedded in a dense matrix. Dense particles which are about 150 A in diameter are often found closely associated with annulate lamellae in the cytoplasm. Similar structures in other echinoderm eggs are basophilic. In this species, unlike other published examples, the association apparently takes place in the cytoplasm only after the lamellae have separated from the nucleus. If 150 A particles are synthesized by annulate lamellae, as their close physical relationship suggests, then in this species at least the necessary synthetic mechanisms and specificity must reside in the structure of annulate lamellae.  相似文献   

18.
In most eukaryotic cells, the nucleus is localized to a specific location. This highlight article focuses on recent advances describing the mechanisms of nuclear migration and anchorage. Central to nuclear positioning mechanisms is the communication between the nuclear envelope and the cytoskeleton. All three components of the cytoskeleton-microtubules, actin filaments and intermediate filaments-are involved in nuclear positioning to varying degrees in different cell types. KASH proteins on the outer nuclear membrane connect to SUN proteins on the inner nuclear membrane. Together they transfer forces between the cytoskeleton and the nuclear lamina. Once at the outer nuclear membrane, KASH proteins can interact with the cytoskeleton. Nuclear migrations are a component of many cellular migration events and defects in nuclear positioning lead to human diseases, most notably lissencephaly.  相似文献   

19.
The nuclear envelope has recently become the object of intense scrutiny because it is the site of nuclear transport and is possibly involved in the organization of the interphase genome, thereby affecting gene expression. The major structural support for the nuclear envelope is the nuclear lamina, composed of the nuclear lamin proteins. They lie on the surface of the inner nuclear membrane and are in direct contact with the chromatin at the edge of the nucleus. The structure of the nuclear lamin proteins has recently been deduced from their cDNAs and shown to have remarkable homologies to the family of cytoplasmic intermediate filaments. However, the lamin proteins have been found to depolymerize in response to metaphase-specific phosphorylation events, and reassemble around daughter chromosomes at the completion of cell division. Little is known of the mechanisms of these dynamics, nor of other post-translational modifications evident in these proteins. In addition, we have as yet no concrete idea of the function of these highly conserved proteins in the cell. This review will summarize our present knowledge of nuclear lamin structure and the new experimental approaches designed to elucidate their function.  相似文献   

20.
Endogenous peroxidase activity in mononuclear phagocytes   总被引:1,自引:0,他引:1  
The diaminobenzidine (DAB) technique has been used to visualize the subcellular localization of peroxidatic enzymes in mononuclear phagocytes. The latter cells are part of the mononuclear phagocyte system (MPS), which includes the monocytes in the bone marrow and blood, their precursors in the bone marrow, and the resident macrophages in the tissues. The DAB cytochemistry has revealed distinct subcellular distribution patterns of peroxidase in the mononuclear phagocytes. Thus the technique facilitates the identification of the various phagocyte types: Promonocytes contain peroxidase reaction in the nuclear envelope, endoplasmic reticulum, Golgi apparatus, and cytoplasmic granules. Monocytes exhibit the reaction product only in cytoplasmic granules. Most resident macrophages show the activity only in the nuclear envelope and endoplasmic reticulum. Furthermore, new phagocyte types have been detected based on the peroxidase cytochemistry. Intermediate cells between monocytes and resident macrophages contain reaction product in the nuclear envelope, endoplasmic reticulum and cytoplasmic granules. The resident macrophages can be divided into two subtypes. Most of them exhibit the pattern noted above. Some, however, are totally devoid of peroxidase reaction. Most studies on peroxidase cytochemistry of monocytes and macrophages agree that the peroxidase patterns reflect differentiation or maturation stages of one cell line. Some authors, however, still interpret the patterns as invariable characteristics of separate cell lines. As to the function of the peroxidase in phagocytes, the cytochemical findings imply that two different peroxidatic enzymes exist in the latter cells: one peroxidase is synthesized in the endoplasmic reticulum of promonocytes and transported to granules via the Golgi apparatus. The synthesis ceases when the promonocyte matures to the monocyte. Upon phagocytosis the peroxidase is discharged into the phagosomes. Biochemical and functional studies have indicated that this peroxidase (myeloperoxidase) is part of a microbicidal system operating in host defence mechanisms. The other enzyme with peroxidatic activity is confined to the nuclear envelope and endoplasmic reticulum of resident macrophages in-situ and of monocytes at early stages in culture. As suggested by the subcellular distribution, the inhibition by peroxidase blockers, and the localization during phagocytosis studies, the latter peroxidase is functionally different from the myeloperoxidase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号