首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemokine Cxcl12 binds Cxcr4 and Cxcr7 receptors to control cell migration in multiple biological contexts, including brain development, leukocyte trafficking, and tumorigenesis. Both receptors are expressed in the CNS, but how they cooperate during migration has not been elucidated. Here, we used the migration of cortical interneurons as a model to study this process. We found that Cxcr4 and Cxcr7 are coexpressed in migrating interneurons, and that Cxcr7 is essential for chemokine signaling. Intriguingly, this process does not exclusively involve Cxcr7, but most critically the modulation of Cxcr4 function. Thus, Cxcr7 is necessary to regulate Cxcr4 protein levels, thereby adapting chemokine responsiveness in migrating cells. This demonstrates that a chemokine receptor modulates the function of another chemokine receptor by controlling the amount of protein that is made available for signaling at the cell surface.  相似文献   

2.
Ni  Jianqi  Shen  Lan  Xu  Liu  Jin  Qin  Wang  Guoliang 《Journal of bioenergetics and biomembranes》2021,53(5):553-560
Journal of Bioenergetics and Biomembranes - The current therapeutic strategy for hyperglycemia is reasonable diet and appropriate exercise with drugs, whose outcome is unsatisfied. Therefore, we...  相似文献   

3.
Versican is a proteoglycan expressed in the extracellular matrix, where it regulates a variety of cell activities and affects tumor development. With alternative splicing, there are four versican isoforms, denoted V0, V1, V2 and V3. The V2 isoform is highly expressed in the mature brain but its function in the mature brain has not yet been elucidated. Since brain tumors are among the most angiogenic of human tumors, we investigated whether or not the V2 isoform plays a role in angiogenesis and found that the glioblastoma cell line U87 stably transfected with V2 formed tumors containing extensive vasculature. Although the V2-expressing cells grew slowly, they survived well in serum-free medium. They also displayed high adhesive ability to endothelial cells and facilitated tube-like structure formation. Importantly, fibronectin was up-regulated by V2 and mediated V2 function. Thus, versican V2 could be a potential target for intervention of brain tumor angiogenesis.  相似文献   

4.
Neuralized acts in a subset of Notch-dependent cell fate decisions including lateral inhibition in Drosophila neurogenesis. Three recent papers reveal that Neuralized acts as a ubiquitin ligase and triggers endocytosis of the ligand Delta.  相似文献   

5.
Circadian rhythms control multiple physiological and pathological processes, including embryonic development in mammals and development of various human diseases. We have recently, in a developing zebrafish embryonic model, discovered that the circadian oscillation controls developmental angiogenesis. Disruption of crucial circadian regulatory genes, including Bmal1 and Period2, results in marked impairment or enhancement of vascular development in zebrafish. At the molecular level, we show that the circadian regulator Bmal1 directly targets the promoter region of the vegf gene in zebrafish, leading to an elevated expression of VEGF. These findings can reasonably be extended to developmental angiogenesis in mammals and even pathological angiogenesis in humans. Thus, our findings, for the first time, shed new light on mechanisms that underlie circadian clock-regulated angiogenesis.  相似文献   

6.
The Notch pathway mediates cell-cell interaction in many developmental processes. Multiple proteins regulate the Notch pathway, among these are the products of the fringe genes. The first fringe gene was identified in Drosophila, where it is involved in the formation of the dorsal/ventral border of the wing disc. It has now been found to be crucial for determining the dorsal/ventral border of the Drosophila eye. In vertebrates, fringe genes play roles in the formation of the apical ectodermal ridge, the dorsal/ventral border in the limb bud, and in the development of somitic borders. The roles of fringe in the neural tube or the eyes of vertebrate embryos are not clear, although it is unlikely that these roles are evolutionarily related to those in the same tissues in Drosophila. Genetic evidences suggest that Fringe protein functions by modulating the Notch signaling pathway, perhaps through differential regulation of Notch activation by different ligands; however, the mechanism underlying Fringe function remains to be investigated.  相似文献   

7.
8.
Caspase activation is a hallmark of apoptosis. However, the molecular mechanisms underlying the regulation of caspase-8 activation within the extrinsic death pathway are not well understood. In this study, we demonstrate that procaspase-8 is phosphorylated in mitotic cells by Cdk1/cyclin B1 on Ser-387, which is located at the N terminus of the catalytic subunit p10. This phosphorylation of procaspase-8 on Ser-387 occurs in cancer cell lines, as well as in primary breast tissues and lymphocytes. Furthermore, RNA interference-mediated silencing of cyclin B1 or treatment with the Cdk1 inhibitor RO-3306 enhances the Fas-mediated activation and processing of procaspase-8 in mitotic cells. A nonphosphorylatable procaspase-8 (S387A) facilitates Fas-induced apoptosis during mitosis. Our findings suggest that Cdk1/cyclin B1 activity shields human cells against extrinsic death stimuli and unravel the molecular details of the cross talk between cell cycle and extrinsic apoptotic pathways. Finally, this new mechanism may also contribute to tumorigenesis.  相似文献   

9.
The microvasculature is important for vertebrate organ development and homeostasis. However, the molecular mechanism of microvascular angiogenesis remains incompletely understood. Through studying Borg5 (Binder of the Rho GTPase 5), which belongs to a family of poorly understood effector proteins of the Cdc42 GTPase, we uncover a role for Borg5 in microvascular angiogenesis. Deletion of Borg5 in mice results in defects in retinal and cardiac microvasculature as well as heart development. Borg5 promotes angiogenesis by regulating persistent directional migration of the endothelial cells (ECs). In primary mouse cardiac ECs (MCECs), Borg5 associates with septins in the perinuclear region and colocalizes with actomyosin fibers. Both Borg5 deletion and septin 7 knockdown lead to a disruption of the perinuclear actomyosin and persistent directional migration. Our findings suggest that Borg5 and septin cytoskeleton spatially control actomyosin activity to ensure persistent directional migration of MCECs and efficient microvascular angiogenesis. Our studies reported here should offer a new avenue to further investigate the functions of Borg5, septin, and actomyosin in the microvasculature in the context of development and disease.  相似文献   

10.
Previous studies suggest that inflammatory cell adhesion molecules may modulate endothelial cell migration and angiogenesis through unknown mechanisms. Using a combination of in vitro and in vivo approaches, herein we reveal a novel redox-sensitive mechanism by which ICAM-1 modulates endothelial GSH that controls VEGF-A-induced eNOS activity, endothelial chemotaxis, and angiogenesis. In vivo disk angiogenesis assays showed attenuated VEGF-A-mediated angiogenesis in ICAM-1(-/-) mice. Moreover, VEGF-A-dependent chemotaxis, eNOS phosphorylation, and nitric oxide production were impaired in ICAM-1(-/-) mouse aortic endothelial cells (MAEC) compared to WT MAEC. Decreasing intracellular GSH in ICAM-1(-/-) MAEC to levels observed in WT MAEC with 150 microM buthionine sulfoximine restored VEGF-A responses. Conversely, GSH supplementation of WT MAEC with 5 mM glutathione ethyl ester mimicked defects observed in ICAM-1(-/-) cells. Deficient angiogenic responses in ICAM-1(-/-) cells were associated with increased expression of the lipid phosphatase PTEN, consistent with antagonism of signaling pathways leading to eNOS activation. PTEN expression was also sensitive to GSH status, decreasing or increasing in proportion to intracellular GSH concentrations. These data suggest a novel role for ICAM-1 in modulating VEGF-A-induced angiogenesis and eNOS activity through regulation of PTEN expression via modulation of intracellular GSH status.  相似文献   

11.
The development of the progenitor zones in the pallium, lateral ganglionic eminence (LGE) and medial ganglionic eminence (MGE) in the subpallium has been well studied; however, so far the role of the caudal ganglionic eminence (CGE), a posterior subpallial domain, in telencephalon patterning remains poorly understood. COUP-TFII, an orphan nuclear receptor, is preferentially expressed in the CGE. We generated COUP-TFII mouse mutants, using Rx-Cre (RxCre;COUP-TFII(F/F)), to study its function in telencephalon development. In these mutants, we found severe defects in the formation of the amygdala complex, including the lateral (LA), basolateral (BLA) and basomedial (BMA) amygdala nuclei. Molecular analysis provided evidence that the migration of CGE-derived Pax6(+) cells failed to settle into the BMA nucleus, owing to reduced expression of neuropilin 1 (Nrp1) and Nrp2, two semaphorin receptors that regulate neuronal cell migration and axon guidance. Our ChIP assays revealed that Nrp1 and Nrp2 genes are the direct targets of COUP-TFII in the telencephalon in vivo. Furthermore, our results showed that the coordinated development between the CGE originated subpallial population (Pax6(+) cells) and pallial populations (Tbr1(+) and Lhx2(+) cells) was essential for patterning the amygdala assembly. Our study presented novel genetic evidence that the caudal ganglionic eminence, a distinct subpallial progenitor zone, contributes cells to the basal telencephalon, such as the BMA nucleus.  相似文献   

12.
RLIP (Ral-interacting protein) is a multifunctional protein that couples ATP hydrolysis with the movement of substances. Its primary function appears to be in the plasma membrane, where it catalyzes the ATP-dependent efflux of glutathione-conjugates (GS-Es), as well as un-metabolized drugs and toxins. In the plasma membrane, its interaction with the clathrin adaptor protein AP2 localizes it to endocytic vesicle, where its GS-E-stimulated ATPase and transport activity are required for clathrin-dependent endocytosis (CDE). CDE is an essential mechanism for internalizing ligand-receptor complexes that signal proliferation (EGF, insulin, IGF1), apoptosis (TNFα, TRAIL, Fas-L), and differentiation and morphogenesis (TGFβ, WNT, Notch, SHH). Aberrant functioning of these pathways appears crucial for most cancer cells to evade apoptosis, invade surrounding tissues, and metastasize. Internalization of receptor-ligand complexes by CDE begins a sequence of events that can terminate, initiate, or modulate downstream signaling; the consequences of signaling through these downstream pathways may be inherently different in cancer and normal cells, a view supported by numerous basic and clinical observations. In this review, we will discuss the GS-E transport activity of RLIP, which determines the rate of ligand endocytosis, and how the inhibition and/or depletion of RLIP globally disrupts in ligand-receptor signaling.  相似文献   

13.
The compensatory angiogenesis that occurs after cerebral ischemia increases blood flow to the injured area and limits extension of the ischemic penumbra. In this way, it improves the local blood supply. Fostering compensatory angiogenesis is an effective treatment for ischemic cerebrovascular disease. However, angiogenesis in the adult organism is a complex, multi-step process, and the mechanisms underlying the regulation of angiogenesis are not well understood. Although Notch signaling reportedly regulates the vascularization process that occurs in ischemic tissues, little is known about the role of Notch signaling in the regulation of ischemia-induced angiogenesis after ischemic stroke. Recent research has indicated that miR-210, a hypoxia-induced microRNA, plays a crucial role in regulating the biological processes that occur in blood vessel endothelial cells under hypoxic conditions. This study was undertaken to investigate the role of miR-210 in regulating angiogenesis in response to brain ischemia injury and the role of the Notch pathway in the body’s response. We found miR-210 to be significantly up-regulated in adult rat ischemic brain cortexes in which the expression of Notch1 signaling molecules was also increased. Hypoxic models of human umbilical vein endothelial cells (HUVE-12) were used to assess changes in miR-210 and Notch1 expression in endothelial cells. Results were consistent with in vivo findings. To determine the molecular mechanisms behind these phenomena, we transfected HUVE-12 cells with miR-210 recombinant lentiviral vectors. We found that miR-210 overexpression caused up-regulation of Notch1 signaling molecules and induced endothelial cells to migrate and form capillary-like structures on Matrigel. These data suggest that miR-210 is involved in the regulation of angiogenesis in response to ischemic injury to the brain. Up-regulation of miR-210 can activate the Notch signaling pathway, which may contribute to angiogenesis after cerebral ischemia.  相似文献   

14.
15.
The heme of neuronal nitric-oxide synthase participates in oxygen activation but also binds self-generated NO during catalysis resulting in reversible feedback inhibition. We utilized point mutagenesis to investigate if a conserved tryptophan residue (Trp-409), which engages in pi-stacking with the heme and hydrogen bonds to its axial cysteine ligand, helps control catalysis and regulation by NO. Surprisingly, mutants W409F and W409Y were hyperactive compared with the wild type regarding NO synthesis without affecting cytochrome c reduction, reductase-independent N-hydroxyarginine oxidation, or Arg and tetrahydrobiopterin binding. In the absence of Arg, NADPH oxidation measurements showed that electron flux through the heme was actually slower in the Trp-409 mutants than in wild-type nNOS. However, little or no NO complex accumulated during NO synthesis by the mutants, as opposed to the wild type. This difference was potentially related to mutants forming unstable 6-coordinate ferrous-NO complexes under anaerobic conditions even in the presence of Arg and tetrahydrobiopterin. Thus, Trp-409 mutations minimize NO feedback inhibition by preventing buildup of an inactive ferrous-NO complex during the steady state. This overcomes the negative effect of the mutation on electron flux and results in hyperactivity. Conservation of Trp-409 among different NOS suggests that the ability of this residue to regulate heme reduction and NO complex formation is important for enzyme physiologic function.  相似文献   

16.
Formation of antigenic peptides by the multicatalytic proteinase complex (MPC, proteasome) is facilitated by incorporation of three subunits (LMP2, LMP7 and LMP10) that are inducible by IFN-gamma and TNF-alpha. These cytokines, or their functional homologues (e.g. TNF-beta), are released from many cells including Th(1)lymphocytes. To learn more about the relationship between control of cellular immunity and expression of LMP subunits, we measured LMP7 levels in human umbilical vein endothelial cells of cytokines promoting cellular immunity (IL-12, IFN-gamma, TNF-alpha) or humoral immunity (IL-10, IL-6). Little or no effect was seen when cells were exposed to IL-6, IL-10 or IL-12 alone. IFN-gamma upregulated LMP7 levels, as did TNF-alpha to a lesser extent. IL-10 downregulated IFN-gamma-induced increases in LMP7 levels, as did IL-12. The findings indicate that regulation of levels of LMP7 is similar to and may be coupled with that of other molecules required for MHC class I-dependent immunity, and depends primarily on cytokines released by Th(1)helper lymphocytes.  相似文献   

17.
Cell-cell signaling coordinates proliferation of metazoan tissues during development, and its alteration can induce malignant transformation. Endocytosis regulates signaling by controlling the levels and activity of transmembrane receptors, both prior to and following ligand engagement. Here, we identify Vps25, a component of the ESCRT machinery that regulates endocytic sorting of signaling receptors, as an unconventional type of Drosophila tumor suppressor. vps25 mutant cells undergo autonomous neoplastic-like transformation, but they also stimulate nonautonomous cell proliferation. Endocytic trafficking defects in vps25 cells cause endosomal accumulation of the signaling receptor Notch and enhanced Notch signaling. Increased Notch activity leads to ectopic production of the mitogenic JAK-STAT pathway ligand Unpaired, which is secreted from mutant cells to induce overproliferation of the surrounding epithelium. Our data show that defects in endocytic sorting can both transform cells and, through heterotypic signaling, alter the behavior of neighboring wild-type tissue.  相似文献   

18.
Yu J  Yaba A  Kasiman C  Thomson T  Johnson J 《PloS one》2011,6(7):e21415
We have shown that inhibition of mTOR in granulosa cells and ovarian follicles results in compromised granulosa proliferation and reduced follicle growth. Further analysis here using spontaneously immortalized rat granulosa cells has revealed that mTOR pathway activity is enhanced during M-phase of the cell cycle. mTOR specific phosphorylation of p70S6 kinase and 4E-BP, and expression of Raptor are all enhanced during M-phase. The predominant effect of mTOR inhibition by the specific inhibitor Rapamycin (RAP) was a dose-responsive arrest in the G1 cell cycle stage. The fraction of granulosa cells that continued to divide in the presence of RAP exhibited a dose-dependent increase in aberrant mitotic figures known as anaphase bridges. Strikingly, estradiol consistently decreased the incidence of aberrant mitotic figures. In mice treated with RAP, the mitotic index was reduced compared to controls, and a similar increase in aberrant mitotic events was noted. RAP injected during a superovulation regime resulted in a dose-dependent reduction in the numbers of eggs ovulated. Implications for the real-time regulation of follicle growth and dominance, including the consequences of increased numbers of aneuploid granulosa cells, are discussed.  相似文献   

19.
Dictyostelium discoideum cells normally exist as individual amoebae, but will enter a period of multicellular development upon starvation. The initial stages of development involve the aggregation of individual cells, using cAMP as a chemoattractant. Chemotaxis is initiated when cAMP binds to its receptor, cAR1, and activates the associated G protein, Gα2βγ. However, chemotaxis will not occur unless there is a high density of starving cells present, as measured by high levels of the secreted quorum sensing molecule, CMF. We previously demonstrated that cells lacking PldB bypass the need for CMF and can aggregate at low cell density, whereas cells overexpressing pldB do not aggregate even at high cell density. Here, we found that PldB controlled both cAMP chemotaxis and cell sorting. PldB was also required by CMF to regulate G protein signaling. Specifically, CMF used PldB, to regulate the dissociation of Gα2 from Gβγ. Using fluorescence resonance energy transfer (FRET), we found that along with cAMP, CMF increased the dissociation of the G protein. In fact, CMF augmented the dissociation induced by cAMP. This augmentation was lost in cells lacking PldB. PldB appears to mediate the CMF signal through the production of phosphatidic acid, as exogenously added phosphatidic acid phenocopies overexpression of pldB. These results suggest that phospholipase D activity is required for CMF to alter the kinetics of cAMP-induced G protein signaling.  相似文献   

20.
Heat shock protein 27 controls apoptosis by regulating Akt activation   总被引:16,自引:0,他引:16  
Activation of the serine-threonine kinase Akt by cytokines, chemokines, and bacterial products delays constitutive neutrophil apoptosis, resulting in a prolonged inflammatory response. We showed previously that Akt exists in a signaling complex with p38 MAPK, MAPK-activated protein kinase-2 (MAPKAPK-2), and heat shock protein-27 (Hsp27); and Hsp27 dissociates from the complex upon neutrophil activation. To better understand the regulation of this signaling module, the hypothesis that Akt phosphorylation of Hsp27 regulates its interaction with Akt was tested. The present study shows that Akt phosphorylated Hsp27 on Ser-82 in vitro and in intact cells, and phosphorylation of Hsp27 resulted in its dissociation from Akt. Additionally, the interaction between Hsp27 and Akt was necessary for activation of Akt in intact neutrophils. Constitutive neutrophil apoptosis was accelerated by sequestration of Hsp27 from Akt, and this enhanced rate of apoptosis was reversed by introduction of constitutively active recombinant Akt. Our results define a new mechanism by which Hsp27 regulates apoptosis, through control of Akt activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号