首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
《Epigenetics》2013,8(3):185-193
We used a chromosome 3 wide NotI microarray for identification of epigenetically inactivated genes in childhood acute lymphoblastic leukemia (ALL). Three novel genes demonstrated frequent methylation in childhood ALL. PPP2R3A (protein phosphatase 2, regulatory subunit B'', alpha) was frequently methylated in T (69%) and B (82%)-ALL. Whilst FBLN2 (fibulin 2) and THRB (thyroid hormone receptor, beta) showed frequent methylation in B-ALL (58%; 56% respectively), but were less frequently methylated in T-ALL (17% for both genes). Recently it was demonstrated that BNC1 (Basonuclin 1) and MXS1 (msh homeobox 1) were frequently methylated across common epithelial cancers. In our series of childhood ALL BNC1 was frequently methylated in both T (77%) and B-ALL (79%), whilst MSX1 showed T-ALL (25%) specific methylation. The methylation of the above 5 genes was cancer specific and expression of the genes could be restored in methylated leukemia cell lines treated with 5-aza-2’-deoxycytidine. This is the first report demonstrating frequent epigenetic inactivation of PPP2R3A, FBLN2, THRB, BNC1 and MSX1 in leukemia. The identification of frequently methylated genes showing cancer specific methylation will be useful in developing early cancer detection screens and for targeted epigenetic therapies.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) has been identified as high-risk subgroup of acute T-lymphoblastic leukemia (T-ALL) with a high rate of FLT3-mutations in adults. To unravel the underlying pathomechanisms and the clinical course we assessed molecular alterations and clinical characteristics in a large cohort of ETP-ALL (n = 68) in comparison to non-ETP T-ALL adult patients. Interestingly, we found a high rate of FLT3-mutations in ETP-ALL samples (n = 24, 35%). Furthermore, FLT3 mutated ETP-ALL was characterized by a specific immunophenotype (CD2+/CD5-/CD13+/CD33-), a distinct gene expression pattern (aberrant expression of IGFBP7, WT1, GATA3) and mutational status (absence of NOTCH1 mutations and a low frequency, 21%, of clonal TCR rearrangements). The observed low GATA3 expression and high WT1 expression in combination with lack of NOTCH1 mutations and a low rate of TCR rearrangements point to a leukemic transformation at the pluripotent prothymocyte stage in FLT3 mutated ETP-ALL. The clinical outcome in ETP-ALL patients was poor, but encouraging in those patients with allogeneic stem cell transplantation (3-year OS: 74%). To further explore the efficacy of targeted therapies, we demonstrate that T-ALL cell lines transfected with FLT3 expression constructs were particularly sensitive to tyrosine kinase inhibitors. In conclusion, FLT3 mutated ETP-ALL defines a molecular distinct stem cell like leukemic subtype. These data warrant clinical studies with the implementation of FLT3 inhibitors in addition to early allogeneic stem cell transplantation for this high risk subgroup.  相似文献   

12.
13.
14.
15.
The RUNX1/AML1 gene is among the most frequently mutated genes in human leukaemia. However, its association with T-cell acute lymphoblastic leukaemia (T-ALL) remains poorly understood. In order to examine RUNX1 point mutations in T-ALL, we conducted an amplicon-based deep sequencing in 65 Southeast Asian childhood patients and 20 T-ALL cell lines, and detected RUNX1 mutations in 6 patients (9.2%) and 5 cell lines (25%). Interestingly, RUNX1-mutated T-ALL cases seem to constitute a subset of early immature T-ALL that may originate from differentiated T-cells. This result provides a deeper insight into the mechanistic basis for leukaemogenesis.  相似文献   

16.
17.
18.
19.
Polo-like kinases (PLKs) and Aurora kinases (AKs) act as key cell cycle regulators in healthy human cells. In cancer, these protein kinases are often overexpressed and dysregulated, thus contributing to uncontrolled cell proliferation and growth. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy arising in the thymus from T-cell progenitors. Primary chemoresistant and relapsed T-ALL patients have yet a poor outcome, therefore novel therapies, targeting signaling pathways important for leukemic cell proliferation, are required. Here, we demonstrate the potential therapeutic effects of BI6727, MK-5108, and GSK1070916, three selective inhibitors of PLK1, AK-A, and AK-B/C, respectively, in a panel of T-ALL cell lines and primary cells from T-ALL patients. The drugs were both cytostatic and cytotoxic to T-ALL cells by inducing G2/M-phase arrest and apoptosis. The drugs retained part of their pro-apoptotic activity in the presence of MS-5 bone marrow stromal cells. Moreover, we document for the first time that BI6727 perturbed both the PI3K/Akt/mTORC2 and the MEK/ERK/mTORC1 signaling pathways, and that a combination of BI6727 with specific inhibitors of the aforementioned pathways (MK-2206, CCI-779) displayed significantly synergistic cytotoxic effects. Taken together, our findings indicate that PLK1 and AK inhibitors display the potential for being employed in innovative therapeutic strategies for improving T-ALL patient outcome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号