首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scale dependent effects of predatory fish on stream benthos   总被引:1,自引:0,他引:1  
Göran Englund 《Oikos》2005,111(1):19-30
In open predation experiments the effects of predators on prey densities can be influenced by predator consumption and by prey movements in to and out of experimental arenas. A published model predicts that the predator effects observed in such experiments are scale dependent over the scale range where there is a transition from movement control (of prey densities) to consumption control. The scale dependence follows from the assumption that per capita rate of emigration out of an experimental arena decreases with increasing arena size.
To test this model the effects of a small benthic fish ( Cottus gobio ) on densities of stream invertebrates was investigated in instream channels of different length (0.5, 2 and 8 m). The effect of fish predation was scale dependent for four prey taxa. For three of these taxa predator effects increased with experimental scale, which is in agreement with model predictions. However, this proved to be a case of "making the right prediction for the wrong reason" as the basic assumption of scale dependent emigration rate was not upheld. By analyzing the behaviour of the model, parameterized with emigration and consumption rates observed in the experimental channels, it was found that observed scale effects occurred because prey emigration in response to the predator treatment was modified by the experimental scale. Further analysis of the parameterized model suggested that the densities of most prey taxa were controlled by prey movements and not by consumption by the sculpins.  相似文献   

2.
Theory predicts that animals will have lower activity levels when either the risk of predation is high or the availability of resources in the environment is high. If encounter rates with predators are proportional to activity level, then we might expect predation mortality to be affected by resource availability and predator density independent of the number of effective predators. In a factorial experiment, we tested whether predation mortality of larval wood frogs, Rana sylvatica, caused by a single larval dragonfly, Anax junius, was affected by the presence of additional caged predators and elevated resource levels. Observations were consistent with predictions. The survival rate of the tadpoles increased when additional caged predators were present and when additional resources were provided. There was no significant interaction term between predator density and food concentration. Lower predation rates at higher predator density is a form of interference competition. Reduced activity of prey at higher predator density is a potential general mechanism for this widespread phenomenon. Higher predation rates at low food levels provides an indirect mechanism for density-dependent predation. When resources are depressed by elevated consumer densities, then the higher activity levels associated with low resource levels can lead to a positive association between consumer density and consumer mortality due to predation. These linkages between variation in behaviour and density-dependent processes argue that variation in behaviour may contribute to the dynamics of the populations. Because the capture rate of predators depends on the resources available to prey, the results also argue that models of food-web dynamics will have to incorporate adaptive variation in behaviour to make accurate predictions.  相似文献   

3.
Intraguild predation (IGP) occurs when one species preys on a competitor species that shares a common resource. Modifying a prey–predator model with prey infection, we propose a model of IG interactions among host, parasitoid, and predator, in which the predator eats parasitized and unparasitized hosts, and the adult parasitoid density is explicitly expressed. Parameter dependences of community structure, including stability of the system, were analytically obtained. Depending on interaction strength (parasitization and predation on unparasitized and parasitized hosts), the model provides six types of community structure: (1) only the host exists, (2) the host and predator coexist stably, (3) the host and parasitoid coexist stably, (4) the host–parasitoid population dynamics are unstable, (5) the three species coexist stably, and (6) the population dynamics of the three species are unstable. In contrast to a traditional prey–predator model with prey infection, which predicts that population dynamics are always locally stable, our model predicts that they are unstable when the parasitization rate is high.  相似文献   

4.
Nymphs of Agriosphodrus dohrniSignoret (Reduviidae) have a strong gregariousness and show group predatory behavior. This study was conducted to clarify adaptive significance of group predation of this species, including laboratory observations and 6-year field surveys. In the laboratory, observations on both solitary and group attacking against armyworms were made at varying prey size classes to compare the capture success rate by solitary predators with that by groups. The efficiency in capturing the prey was significantly higher in group attacking at any prey size class compared. Data obtained from the field surveys indicated the tnedency for searching nymphs to feed in group and to increase the number of predators feeding per prey item with increasing prey size. Average sizes of prey captured were also larger in group feeding throughout the nymphal stage. In particular, it was remarkable that, when prey were “creeping” types, the upper size limit of prey eaten was dramatically increased.  相似文献   

5.
Functionally redundant predation and functionally complementary predation are both widespread phenomena in nature. Functional complementary predation can be found, for example, when predators feed on different life stages of their prey, while functional redundant predation occurs when different predators feed on all life stages of a shared prey. Both phenomena are common in nature, and the extent of differential life-stage predation depends mostly on prey life history; complementary predation is expected to be more common on metamorphosing prey species, while redundant predation is thought to be higher on non-metamorphosing species. We used an ordinary differential equation model to explore the effect of varying degree of complementary and redundant predation on the dynamic properties of a system with two predators that feed on an age-structured prey. Our main finding was that predation on one stage (adult or juvenile) resulted in a more stable system (i.e., it is stable for a wider range of parameters) compared to when the two predators mix the two prey developmental stages in their diet. Our results demonstrate that predator–prey dynamics depends strongly on predators' functionality when predator species richness is fixed. Results also suggest that systems with metamorphosing prey are expected to be more diverse compared to systems with non-metamorphosing prey.  相似文献   

6.
Is arthropod predation exclusively satiation‐driven?   总被引:4,自引:0,他引:4  
Functional response models differ in which factors limit predation (e.g. searching efficiency, prey handling time, digestion) and whether predation behaviour is governed by an internal physiological state (e.g. satiation). There is now much evidence that satiation is a key factor in understanding changes in foraging behaviour, and that many predators are effectively digestion limited. Here, we ask if predation in a predatory arthropod can be explained from satiation-driven behaviour alone, or if behaviour is also influenced by the density of prey other than via the effect of prey ingestion on satiation. To address this question a satiation-based predation model is formulated, for which parameters are estimated on the basis of observations on digestion rate, satiation-related prey searching rate and prey capture behaviour, basically under high prey density conditions. The model predictions are subsequently tested against longer term predation experiments carried out at high and low prey densities. Since satiation can easily be linked with egg production, these tests are carried out both for predation and oviposition.
The predator–prey systems under study consist of females of two predatory mite species ( Neoseiulus barkeri and N. cucumeris ) and the larvae of two thrips species ( Thrips tabaci and Frankliniella occidentalis ) as their prey. For N. barkeri foraging on T. tabaci , the model gives good predictions at both high (4 larvae cm−1) and low (0.1–1 larvae cm−2) prey densities. For N. cucumeris foraging on F. occidentalis , the predictions hold at the high prey density, but are too low at low prey densities. Thus our analysis indicates that we cannot fully explain density-dependent predation rates from satiation-driven behaviour alone. Different mechanisms are suggested on how prey density may affect foraging efficiency other than via satiation.  相似文献   

7.
Dispersal theory generally predicts kin competition, inbreeding, and temporal variation in habitat quality should select for dispersal, whereas spatial variation in habitat quality should select against dispersal. The effect of predation on the evolution of dispersal is currently not well-known: because predation can be variable in both space and time, it is not clear whether or when predation will promote dispersal within prey. Moreover, the evolution of prey dispersal affects strongly the encounter rate of predator and prey individuals, which greatly determines the ecological dynamics, and in turn changes the selection pressures for prey dispersal, in an eco-evolutionary feedback loop. When taken all together the effect of predation on prey dispersal is rather difficult to predict. We analyze a spatially explicit, individual-based predator-prey model and its mathematical approximation to investigate the evolution of prey dispersal. Competition and predation depend on local, rather than landscape-scale densities, and the spatial pattern of predation corresponds well to that of predators using restricted home ranges (e.g. central-place foragers). Analyses show the balance between the level of competition and predation pressure an individual is expected to experience determines whether prey should disperse or stay close to their parents and siblings, and more predation selects for less prey dispersal. Predators with smaller home ranges also select for less prey dispersal; more prey dispersal is favoured if predators have large home ranges, are very mobile, and/or are evenly distributed across the landscape.  相似文献   

8.
Inducible defenses of prey and inducible offenses of predators are drastic phenotypic changes activated by the interaction between a prey and predator. Inducible defenses occur in many taxa and occur more frequently than inducible offenses. Recent empirical studies have reported reciprocal phenotypic changes in both predator and prey. Here, we model the coevolution of inducible plasticity in both prey and predator, and examine how the evolutionary dynamics of inducible plasticity affect the population dynamics of a predator-prey system. Under a broad range of parameter values, the proportion of predators with an offensive phenotype is smaller than the proportion of prey with a defensive phenotype, and the offense level is relatively lower than the defense level at evolutionary end points. Our model also predicts that inducible plasticity evolves in both species when predation success depends sensitively on the difference in the inducible trait value between the two species. Reciprocal phenotypic plasticity may be widespread in nature but may have been overlooked by field studies because offensive phenotypes are rare and inconspicuous.  相似文献   

9.
The theory of intraguild predation (IGP) largely studies effects on equilibrium densities of predators and prey, while experiments mostly concern transient dynamics. We studied the effects of an intraguild (IG) predator, the bug Orius laevigatus, on the population dynamics of IG-prey, the predatory mite Phytoseiulus persimilis, and a shared prey, the phytophagous two-spotted spider mite Tetranychus urticae, as well as on the performance of cucumber plants in a greenhouse. The interaction of the predatory mite and the spider mite is highly unstable, and ends either by herbivores overexploiting the plant or predators exterminating the herbivores. We studied the effect of IGP on the transient dynamics of this system, and compared the dynamics with that predicted by a simple population-dynamical model with IGP added. Behavioural studies showed that the predatory bug and the predatory mite were both attracted to plants infested by spider mites and that the two predators did not avoid plants occupied by the other predator. Observations on foraging behaviour of the predatory bug showed that it attacks and kills large numbers of predatory mites and spider mites. The model predicts strong effects of predation and prey preference by the predatory bugs on the dynamics of predatory mites and spider mites. However, experiments in which the predatory bug was added to populations of predatory mites and spider mites had little or no effect on numbers of both mite species, and cucumber plant and fruit weight.  相似文献   

10.
The costs of carnivory   总被引:1,自引:0,他引:1       下载免费PDF全文
Mammalian carnivores fall into two broad dietary groups: smaller carnivores (<20 kg) that feed on very small prey (invertebrates and small vertebrates) and larger carnivores (>20 kg) that specialize in feeding on large vertebrates. We develop a model that predicts the mass-related energy budgets and limits of carnivore size within these groups. We show that the transition from small to large prey can be predicted by the maximization of net energy gain; larger carnivores achieve a higher net gain rate by concentrating on large prey. However, because it requires more energy to pursue and subdue large prey, this leads to a 2-fold step increase in energy expenditure, as well as increased intake. Across all species, energy expenditure and intake both follow a three-fourths scaling with body mass. However, when each dietary group is considered individually they both display a shallower scaling. This suggests that carnivores at the upper limits of each group are constrained by intake and adopt energy conserving strategies to counter this. Given predictions of expenditure and estimates of intake, we predict a maximum carnivore mass of approximately a ton, consistent with the largest extinct species. Our approach provides a framework for understanding carnivore energetics, size, and extinction dynamics.  相似文献   

11.
This paper presents an extension to previously published work which studied encounter rates of planktonic predators with restricted perception fields, to examine the related problems of prey capture and predation rates. Small-scale turbulence influences planktonic predation in two ways: the extra energy of the flow enhances the number of encounter events between individual predator and prey meso/micro-zooplankton, but it lowers the capture probability (because the time spent by the predator and prey in close proximity is reduced). Typically, an 'encounter' has usually been defined as an event when a potential prey swims (or is advected) to within a distance R of the predator in any direction. However, there is a considerable body of experimental evidence showing that predators perception fields are far from spherical; often they are wedge shaped (e.g. fish larvae), or strongly aligned with the directions of sensory antennae (e.g. copepods); and this is certain to influence optimal predation strategies. This paper presents a theoretical model which for the first time examines the combined problems of both encounter and capture for a predator with a restricted perception field swimming in a turbulent flow. If such a predator adopts a cruising strategy (continuous swimming, possibly with direction changes) the model predictions suggest that predation rates actually vary little with swimming speed, in contrast to predictions made for spherical perception fields. Consequently, cruising predators are predicted to swim at relatively low speeds whilst foraging. However, application of the model to examine the net energy gain of a typical pause-travel predator (the Atlantic cod larva), does predict the existence of an optimal ratio of the length of pauses to time spent swimming (specifically one pause phase to every two travel phases), in line with experimental observations. Kinematic simulations are presented which support these findings.  相似文献   

12.
Intraguild predation has become a major research topic in biological control. Quantification of multipredator interactions and an understanding of the consequences on target prey populations are needed, which only highlights the importance of population dynamics models in this field. However, intraguild predation models are usually based on Lotka–Volterra equations, which have been shown not to be adequate for modeling population dynamics of aphidophagous insects and their prey. Here we use a simple model developed for simulation of population dynamics of aphidophagous insects, which is based on the type of egg distribution made by predatory females, to estimate the real strength of intraguild predation in the aphidophagous insects. The model consists of two components: random egg distribution among aphid colonies, and between-season population dynamics of the predatory species. The model is used to estimate the proportion of predatory individuals that face a conflict with a heterospecific competitor at least once during their life. Based on this, predictions are made on the population dynamics of both predatory species. The predictions are confronted with our data on intraguild predation in ladybirds.  相似文献   

13.
Transitions in ecological systems often occur without apparent warning, and may represent shifts between alternative persistent states. Decreasing ecological resilience (the size of the basin of attraction around a stable state) can signal an impending transition, but this effect is difficult to measure in practice. Recent research has suggested that a decreasing rate of recovery from small perturbations (critical slowing down) is a good indicator of ecological resilience. Here we use analytical techniques to draw general conclusions about the conditions under which critical slowing down provides an early indicator of transitions in two-species predator-prey and competition models. The models exhibit three types of transition: the predator-prey model has a Hopf bifurcation and a transcritical bifurcation, and the competition model has two saddle-node bifurcations (in which case the system exhibits hysteresis) or two transcritical bifurcations, depending on the parameterisation. We find that critical slowing down is an earlier indicator of the Hopf bifurcation in predator-prey models in which prey are regulated by predation rather than by intrinsic density-dependent effects and an earlier indicator of transitions in competition models in which the dynamics of the rare species operate on slower timescales than the dynamics of the common species. These results lead directly to predictions for more complex multi-species systems, which can be tested using simulation models or real ecosystems.  相似文献   

14.
EcoSim II uses results from the Ecopath procedure for trophic mass-balance analysis to define biomass dynamics models for predicting temporal change in exploited ecosystems. Key populations can be represented in further detail by using delay-difference models to account for both biomass and numbers dynamics. A major problem revealed by linking the population and biomass dynamics models is in representation of population responses to changes in food supply; simple proportional growth and reproductive responses lead to unrealistic predictions of changes in mean body size with changes in fishing mortality. EcoSim II allows users to specify life history mechanisms to avoid such unrealistic predictions: animals may translate changes in feeding rate into changes in reproductive rather than growth rates, or they may translate changes in food availability into changes in foraging time that in turn affects predation risk. These options, along with model relationships for limits on prey availability caused by predation avoidance tactics, tend to cause strong compensatory responses in modeled populations. It is likely that such compensatory responses are responsible for our inability to find obvious correlations between interacting trophic components in fisheries time-series data. But Ecosim II does not just predict strong compensatory responses: it also suggests that large piscivores may be vulnerable to delayed recruitment collapses caused by increases in prey species that are in turn competitors/predators of juvenile piscivores. Received 24 February 1999; accepted 3 August 1999.  相似文献   

15.
Predation risk and the evolutionary ecology of reproductive behaviour   总被引:4,自引:0,他引:4  
Andrew  Sih 《Journal of fish biology》1994,45(SA):111-130
A large literature exists on the effects of predation risk on foraging and survival-related behaviours. In contrast, with some notable exceptions, relatively few theoretical or experimental studies have examined the effects of predation risk on reproductive behaviours. Existing literature on risk and reproductive behaviour and suggestion directions for future study are reviewed. In particular: (1) effects on predation risk on mating behaviour; (2) the influence of spatial patchiness on interactions between risk and reproductive behaviour; (3) the potential influence of multi-species interactions on the effects of predation risk on mating dynamics; (4) the importance of looking at sets of inter-related antipredator traits; and (5) some effects of predation risk on prey population patterns due to changes in prey reproductive behaviour are discussed. To illustrate various points examples involving fish and other aquatic organisms are used.  相似文献   

16.
1. Population models based on Lotka–Volterra-type differential equations with logistic prey were made for a simple stream community including two stonefly prey Leuctra nigra Olivier and Nemurella pictetii Klàpalek, and two predators, the caddisfly Plectrocnemia conspersa (Curtis) and the alderfly Sialis fuliginosa Pictet. In order to assess the importance of predation in this system, we constructed both an explicit four-species model and a simplified model with two functional groups which was more amenable to analytical treatment.
2. The models were parameterized using new data on adult emergence and recruitment combined with previously published data on larval densities and prey uptake. The models were falsified if parameterizations led either to negative prey carrying capacities or to unstable dynamics.
3. Both the functional group and four-species models predict asymptotically stable interactions, with feasible carrying capacities. The models are consistent in predicting that the observed prey are in excess of 70% of their carrying capacities. The four-species model indicates that predation impact is not evenly shared between the two prey, with L. nigra being depressed further from its carrying capacity than N. pictetii .
4. Sensitivity analysis shows that the results of the full four-species model remain very robust to realistic levels of stochastic variation in the input data.
5. The four-species model is used to predict the outcome of an ongoing large-scale field experiment involving the transfer of all S. fuliginosa eggs from one stretch of the stream to another. Although the equilibrial prey populations are barely affected by the manipulation, the model predicts marked transient prey-release and prey-depression of L. nigra in the predator addition and removal areas, respectively.  相似文献   

17.
Recently Sillén-Tullberg & Leimar (1988) modelled a general explanation for the evolution of gregariousness in prey organisms that live exposed, have no means of escape when discovered by a predator, and are small in relation to a potential predator (who thus can sample many prey individuals in one encounter). The model predicts that gregarious prey organisms of that type ought to be distasteful, and that the evolution of gregariousness will be favoured by aposematic coloration facilitating avoidance learning in a predator. Obviously, any protective power of grouping depends on group size. According to the Sillén-Tullberg & Leimar model, (1) “members of small groups may have a higher rate of death from predation than solitary individuals, but above a certain minimum group size, group members do better than solitary individuals; … as group size increases above the minimum value, group members suffer fewer and fewer deaths from predation”. They benefit from the “decreased risk of predator attack on any particular individual”, called dilution effect. (2) “The more prey specimens that the predator needs to sample during avoidance learning, the larger an aggregation needs to be in order for gregariousness to be advantageous”. It is further explained that (3) selection resulting from predation favours increase in group size until it “acts like a predator-satiation mechanism”.  相似文献   

18.
We examined environmental and social factors affecting reproductivesuccess across a 20-year data set of individually known cheetahson the Serengeti Plains of Tanzania. Because cheetahs are seeninfrequently and are not amenable to mark–recapture techniques,we devised a model to estimate time of death for individualsthat disappeared from our records. We found that males had markedlylower survival than females. Recruitment was negatively affectedby rainfall but positively affected by numbers of Thomson'sgazelles, the cheetahs' chief prey. There was a negative associationbetween recruitment and numbers of lions, demonstrating thatthe high rates of predation observed in previous studies haveimplications for the dynamics of cheetah populations. Recruitmentwas related to mother's age, peaking when she reached 6–7years. Sociality affected survival in two ways. First, adolescentsliving in temporary sibling groups had higher survival thansingletons, particularly males with sisters. Second, adult malesliving in coalitions had higher survival than singletons inperiods when other coalitions were numerous, yet they had lowersurvival when other coalitions were rare. These results corroborateobservations of enhanced prey capture by female adolescentsand antipredator benefits for adolescents in groups, as wellas competitive advantages for adult males in groups. Furthermore,our findings stress the importance of interactions between environmentaland social factors in affecting reproductive success in mammals.  相似文献   

19.
Antlion larvae are typically considered as trap-building predators, but some species of antlions always forage without using pits or only sometimes use pits to capture prey; they can ambush prey without pits. This study examined a species that switches its strategy between pit-trapping and ambushing and asked the mechanism behind the switching behaviour. A dynamic optimization model incorporating tradeoffs between the two strategies was built. The tradeoffs were prey capture success and predation risk (both are higher when pit-trapping). The model predicted that antlions should use the trap-building strategy when their energy status is low and should use the ambush strategy when their energy status is high. These predictions as well as an assumption (i.e., predation risk associated with pit-trapping is higher than that associated with ambushing) of the model were empirically confirmed. The results suggest that antlions flexibly switch between pit-trapping and ambushing to maximize their fitness by balancing the costs and benefits of the two strategies.  相似文献   

20.
Theory predicts that intraguild predation leads to different community dynamics than the trophic cascades of a linear food chain. However, experimental comparisons of these two food‐web modules are rare. Mixotrophic plankton species combine photoautotrophic and heterotrophic nutrition by grazing upon other phytoplankton species. We found that the mixotrophic chrysophyte Ochromonas can grow autotrophically on ammonium, but not on nitrate. This offered a unique opportunity to compare predator–prey interactions in the presence and absence of intraguild predation, without changing the species composition of the community. With ammonium as nitrogen source, Ochromonas can compete with its autotrophic prey for nitrogen and therefore acts as intraguild predator. With nitrate, Ochromonas acts solely as predator, and is not in competition with its prey for nitrogen. We parameterized a simple intraguild predation model based on chemostat experiments with monocultures of Ochromonas and the toxic cyanobacterium Microcystis. Subsequently, we tested the model predictions by inoculating Ochromonas into the Microcystis monocultures, and vice versa. The results showed that Microcystis was a better competitor for ammonium than Ochromonas. In agreement with theoretical predictions, Microcystis was much more strongly suppressed by intraguild predation on ammonium than by top–down predation on nitrate. Yet, Microcystis persisted at very low population densities, because the type III functional response of Ochromonas implied that the grazing pressure upon Microcystis became low when Microcystis was rare. Our results provide experimental support for intraguild predation theory, and indicate that intraguild predation may enable biological control of microbial pest species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号