首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is demonstrated that a two-enzyme component synergistic model can account for the observation that the degree of synergism goes through a maximum as the total enzyme concentration is increased. The degree of synergism is low at low enzyme concentration because the extent of conversion is low and therefore the cellulose chain ends, present originally, are not exhausted; thus the action of the cellobiohydrolase (CBH) is not dependent on the chain ends generated by the endoglucanase (EG). The degree of synergism declines at high enzyme concentration due to saturation of adsorption sites with CBH, thus decreasing the generation of chain ends by EG. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
Detailed atomistic computer simulations are now widely used to study biological membranes, including increasingly mixed lipid systems that involve, for example, cholesterol, which is a key membrane lipid. Typically, simulations of these systems start from a preassembled bilayer because the timescale on which self-assembly occurs in mixed lipid systems is beyond the practical abilities of fully atomistic simulations. To overcome this limitation and study bilayer self-assembly, coarse-grained models have been developed. Although there are several coarse-grained models for cholesterol reported in the literature, these generally fail to account explicitly for the unique molecular features of cholesterol that relate to its function and role as a membrane lipid. In this work, we propose a new coarse-grained model for cholesterol that retains the molecule's unique features and, as a result, can be used to study crystalline structures of cholesterol. In the development of the model, two levels of coarse-graining are explored and the importance of retaining key molecular features in the coarse-grained model that are relevant to structural properties is investigated.  相似文献   

3.

We recently discovered a novel glycoside hydrolase family 6 (GH6) cellobiohydrolase from Paenibacillus curdlanolyticus B-6 (PcCel6A), which is rarely found in bacteria. This enzyme is a true exo-type cellobiohydrolase which exhibits high substrate specificity on amorphous cellulose and low substrate specificity on crystalline cellulose, while this showed no activity on substitution substrates, carboxymethyl cellulose and xylan, distinct from all other known GH6 cellobiohydrolases. Product profiles, HPLC analysis of the hydrolysis products and a schematic drawing of the substrate-binding subsites catalysing cellooligosaccharides can explain the new mode of action of this enzyme which prefers to hydrolyse cellopentaose. PcCel6A was not inhibited by glucose or cellobiose at concentrations up to 300 and 100 mM, respectively. A good synergistic effect for glucose production was found when PcCel6A acted together with processive endoglucanase Cel9R from Clostridium thermocellum and β-glucosidase CglT from Thermoanaerobacter brockii. These properties of PcCel6A make it a suitable candidate for industrial application in the cellulose degradation process.

  相似文献   

4.
Force-induced changes in protein conformation are thought to be responsible for certain cellular responses to mechanical force. Changes in conformation subsequently initiate a biochemical response by alterations in, for example, binding affinity to another protein or enzymatic activity. Here, a model of protein extension under external forcing is created inspired by Kramers' theory for reaction rate kinetics in liquids. The protein is assumed to have two distinct conformational states: a relaxed state, C(1), preferred in the absence of external force, and an extended state, C(2), favored under force application. In the context of mechanotransduction, the extended state is a conformation from which the protein can initiate signaling. Appearance and persistence of C(2) are assumed to lead to transduction of the mechanical signal into a chemical one. The protein energy landscape is represented by two harmonic wells of stiffness kappa(1) and kappa(2), whose minima correspond to conformations C(1) and C(2). First passage time t(f) from C(1) to C(2) is determined from the Fokker-Plank equation employing several different approaches found in the literature. These various approaches exhibit significant differences in behavior as force increases. Although the level of applied force and the energy difference between states largely determine equilibrium, the dominant influence on t(f) is the height of the transition state. Distortions in the energy landscape due to force can also have a significant influence, however, exhibiting a weaker force dependence than exponential as previously reported, approaching a nearly constant value at a level of force that depends on the ratio kappa(1)/kappa(2). Two model systems are used to demonstrate the utility of this approach: a short alpha-helix undergoing a transition between two well-defined states and a simple molecular motor.  相似文献   

5.
Biomolecules undergo liquid-liquid phase separation (LLPS), resulting in the formation of multicomponent protein-RNA membraneless organelles in cells. However, the physiological and pathological role of post-translational modifications (PTMs) on the biophysics of phase behavior is only beginning to be probed. To study the effect of PTMs on LLPS in silico, we extend our transferable coarse-grained model of intrinsically disordered proteins to include phosphorylated and acetylated amino acids. Using the parameters for modified amino acids available for fixed-charge atomistic force fields, we parameterize the size and atomistic hydropathy of the coarse-grained-modified amino acid beads and, hence, the interactions between the modified and natural amino acids. We then elucidate how the number and position of phosphorylated and acetylated residues alter the protein’s single-chain compactness and its propensity to phase separate. We show that both the number and the position of phosphorylated threonines/serines or acetylated lysines can serve as a molecular on/off switch for phase separation in the well-studied disordered regions of Fused in Sarcoma (FUS) and DDX3X, respectively. We also compare modified residues to their commonly used PTM mimics for their impact on chain properties. Importantly, we show that the model can predict and capture experimentally measured differences in the phase behavior for position-specific modifications, showing that the position of modifications can dictate phase separation. In sum, this model will be useful for studying LLPS of post-translationally modified intrinsically disordered proteins and predicting how modifications control phase behavior with position-specific resolution.  相似文献   

6.
B Erman 《Biophysical journal》2001,81(6):3534-3544
Langevin dynamics of a protein molecule with Go-type potentials is developed and used to analyze long time-scale events in the folding of cytochrome c. Several trajectories are generated, starting from random coil configurations and going to the native state, that are a few angstroms root mean square deviation (RMSD) from the native structure. The dynamics is controlled, to a large scale, by the two terminal helices that are in contact in the native state. These two helices form very early during folding, and depending on the trajectory, they either stabilize rapidly or break and re-form in going over steric barriers. The extended initial chain exhibits a rapid folding transition into a relatively compact shape, after which the helices are reorganized in a highly correlated manner. The time of formation of residue pair contacts strongly points to the hierarchical nature of folding; i.e., secondary structure forms first, followed by rearrangements of larger length scales at longer times. The kinetics of formation of native contacts is also analyzed, and the onset of a stable globular configuration, referred to as the molten globule in the literature, is identified. Predictions of the model are compared with extensive experimental data on cytochrome c.  相似文献   

7.
Novel enzymes for the degradation of cellulose   总被引:3,自引:0,他引:3  
ABSTRACT: The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases) by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first "extracting" these chains from their crystalline matrix.  相似文献   

8.
Abstract Certain isolated components of fungal cellulases, which cannot effect the breakdown of highly ordered cellulose individually, interact together synergistically to do so when recombined. Suprisingly, not all fungal cellulase components exhibit this property, and no such synergism has been observed so far between fungal and bacterial cellulases.
The cellulase complex of Clostridium thermocellum cannot effect the extensive breakdown of highly ordered cellulose unless Ca2+ and dithiothreitol (DTT) are present. However, we now report that isolated cellobiohydrolase from Trichoderma koningii can combine with C. thermocellum cellulase to effect the breakdown of cellulose in the absence of Ca2+ and DTT. enhanced activity is observed if Ca2+ and DTT are present.
This finding may have important applications in industry: it certainly has important implications for those interested in the basic mechanism of cellulase action in C. thermocellum .  相似文献   

9.
10.
11.
We conducted a series of coarse-grained molecular dynamics (CG-MD) simulations to investigate the complicated actions of melittin, which is an antimicrobial peptide (AMP) derived from honey bee venom, on a lipid membrane. To accurately simulate the AMP action, we developed and used a protein CG model as an extension of the pSPICA force field (FF), which was designed to reproduce several thermodynamic quantities and structural properties. At a low peptide-to-lipid (P/L) ratio (1/102), no defect was detected. At P/L = 1/51, toroidal pore formation was observed due to collective insertion of multiple melittin peptides from the N-termini. The pore formation was initiated by a local increase in membrane curvature in the vicinity of the peptide aggregate. At a higher P/L ratio (1/26), two more modes were detected, seemingly not controlled by the P/L ratio but by a local arrangement of melittin peptides: 1. Pore formation accompanied by lipid extraction by melittin peptides:a detergent-like mechanism. 2. A rapidly formed large pore in a significantly curved membrane: bursting. Thus, we observed three pore formation modes (toroidal pore formation, lipid extraction, and bursting) depending on the peptide concentration and local arrangement. These observations were consistent with experimental observations and hypothesized melittin modes. Through this study, we found that the local arrangements and population of melittin peptides and the area expansion rate by membrane deformation were key to the initiation of and competition among the multiple pore formation mechanisms.  相似文献   

12.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. Computer simulations of complete viral particles can provide theoretical insights into large-scale viral processes including assembly, budding, egress, entry, and fusion. Detailed atomistic simulations are constrained to shorter timescales and require billion-atom simulations for these processes. Here, we report the current status and ongoing development of a largely “bottom-up” coarse-grained (CG) model of the SARS-CoV-2 virion. Data from a combination of cryo-electron microscopy (cryo-EM), x-ray crystallography, and computational predictions were used to build molecular models of structural SARS-CoV-2 proteins, which were then assembled into a complete virion model. We describe how CG molecular interactions can be derived from all-atom simulations, how viral behavior difficult to capture in atomistic simulations can be incorporated into the CG models, and how the CG models can be iteratively improved as new data become publicly available. Our initial CG model and the detailed methods presented are intended to serve as a resource for researchers working on COVID-19 who are interested in performing multiscale simulations of the SARS-CoV-2 virion.  相似文献   

13.
Intact and partially acid hydrolyzed cellulose from Acetobacter xylinum were used as model substrates for cellulose hydrolysis by 1,4-beta-D-glucan-cellobiohydrolase I (CBH I) and 1,4-beta-D-endoglucanase I (EG I) from Trichoderma reesei. A high synergy between CBH I and EG I in simultaneous action was observed with intact bacterial cellulose (BC), but this synergistic effect was rapidly reduced by acid pretreatment of the cellulose. Moreover, a distinct synergistic effect was observed upon sequential endo-exo action on BC, but not on bacterial microcrystalline cellulose (BMCC). A mechanism for endo-exo synergism on crystalline cellulose is proposed where the simultaneous action of the enzymes counteract the decrease of activity caused by undesirable changes in the cellulose surface microstructure.  相似文献   

14.
15.
16.
J. S. Shiner 《Biopolymers》1982,21(11):2241-2252
The concerted model of Monod, Wyman, and Changeux is generalized so that all effects of interactions for an enzyme operating at a nonequilibrium stationary state are considered. In contrast to the original model, which is based on an analogy to equilibrium ligand binding, the generalization may show both “positive” and “negative cooperativity” in both catalytic binding and conformational processes. Furthermore, in contrast to any equilibrium binding model, the Hill coefficients may be greater than the number of sites n. For catalysis, the maximum value is 2n, and for conformational changes, n + 1. These points are illustrated by two cases that yield simpler analytic expressions. The first obtains when catalysis occurs on a much faster time scale than the conformational changes, and the second, when this situation is reversed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号