首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although CD8+ cytotoxic T lymphocytes (CTLs) are protective in HIV-1 infection, the factors determining their antiviral efficiency are poorly defined. It is proposed that Gag targeting is superior because of very early Gag epitope presentation, allowing early killing of infected cells before Nef-mediated downregulation of human leukocyte antigen class I (HLA-I). To study Gag epitope presentation kinetics, three epitopes (SL977-85, KF11162-172, and TW10240-249) were genetically translocated from their endogenous location in the Rev-dependent (late) gag gene into the Rev-independent (early) nef gene with concomitant mutation of the corresponding endogenous epitopes to nonrecognized sequences. These viruses were compared to the index virus for CTL-mediated suppression of replication and the susceptibility of this antiviral activity to Nef-mediated HLA-I downregulation. SL9-specific CTLs gained activity after SL9 translocation to Nef, going from Nef sensitive to Nef insensitive, indicating that translocation accelerated infected cell recognition from after to before HLA-I downregulation. KF11-specific CTL antiviral activity was unchanged and insensitive to HLA-I downregulation before and after KF11 translocation, suggesting that already rapid recognition of infected cells was not accelerated. However, TW10-specific CTLs that were insensitive to Nef at the baseline became sensitive with reduced antiviral activity after translocation, indicating that translocation retarded epitope expression. Cytosolic peptide processing assays suggested that TW10 was inefficiently generated after translocation to Nef, compared to SL9 and KF11. As a whole, these data demonstrate that epitope presentation kinetics play an important role in CTL antiviral efficiency, that Gag epitopes are not uniformly presented early, and that the epitope context can play a major role in presentation kinetics.  相似文献   

2.
Der p 7 is an important house dust mite allergen. However, antigenic determinants of Der p 7 are largely unknown. The purpose of this study is to analyze the determinants of Der p 7 and determine the structural basis of interactions between Der p 7 and WH9, an IgE-binding inhibition mouse monoclonal antibody (MoAb). IgE and WH9-reactive determinant(s) was identified by immunoblot using allergen mutants. A 3-D binary complex structure of Der p 7 and WH9 was simulated with homology modeling and docking methods. Our results obtained showed that among the five Der p 7 mutants (S156A, I157A, L158A, D159A, P160A), serum no. 1045 with IgE-binding against Der p 7 exhibited a reduced IgE immunoblot reactivity against Der p 7 L158A and D159A mutants. WH9 showed reduced immunoblot reactivity against S156A, L158A, D159A and P160A and the observation was confirmed by immunoblot inhibition. The WH9-binding determinant on Der p 7 containing S156, L158, D159 and P160 assumes a loop-like structure. The structural model of the Der p 7-WH9 complex suggests residues S156, I157, L158, D159 and P160 of Der p 7 contribute to WH9 binding via potential hydrogen bonds, electrostatic and hydrophobic interactions. In conclusion, MoAb WH9 interacts with critical residues L158 and D159 of Der p 7 and inhibits IgE-binding to Der p 7. Results obtained advance our understanding on molecular and structural bases of the antigenicity of Der p 7, its interactions with MoAb WH9 and facilitate the design of safer immunotherapy of human atopic disorders.  相似文献   

3.
4.
5.
Russian Journal of Bioorganic Chemistry - A series of new thiazolidine-2,4-dione and hydantoin derivatives were synthesized by Knoevenagel condensation.. The compounds were identified by their...  相似文献   

6.
HIV-1 protease represents an appealing system for directed enzyme re-design, since it has various different endogenous targets, a relatively simple structure and it is well studied. Recently Chaudhury and Gray (Structure (2009) 17: 1636–1648) published a computational algorithm to discern the specificity determining residues of HIV-1 protease. In this paper we present two computational tools aimed at re-designing HIV-1 protease, derived from the algorithm of Chaudhuri and Gray. First, we present an energy-only based methodology to discriminate cleavable and non cleavable peptides for HIV-1 proteases, both wild type and mutant. Secondly, we show an algorithm we developed to predict mutant HIV-1 proteases capable of cleaving a new target substrate peptide, different from the natural targets of HIV-1 protease. The obtained in silico mutant enzymes were analyzed in terms of cleavability and specificity towards the target peptide using the energy-only methodology. We found two mutant proteases as best candidates for specificity and cleavability towards the target sequence.  相似文献   

7.
HIV-1 escape mutants are well known to be selected by immune pressure via HIV-1-specific cytotoxic T lymphocytes (CTLs) and neutralizing antibodies. The ability of the CTLs to suppress HIV-1 replication is assumed to be associated with the selection of escape mutants from the CTLs. Therefore, we first investigated the correlation between the ability of HLA-A*1101-restricted CTLs recognizing immunodominant epitopes in vitro and the selection of escape mutants. The result showed that there was no correlation between the ability of these CTLs to suppress HIV-1 replication in vitro and the appearance of escape mutants. The CTLs that had a strong ability to suppress HIV-1 replication in vitro but failed to select escape mutants expressed a higher level of PD-1 in vivo, whereas those that had a strong ability to suppress HIV-1 replication in vitro and selected escape mutants expressed a low level of PD-1. Ex vivo analysis of these CTLs revealed that the latter CTLs had a significantly stronger ability to recognize the epitope than the former ones. These results suggest that escape mutations are selected by HIV-1-specific CTLs that have a stronger ability to recognize HIV-1 in vivo but not in vitro.HIV-1-specific cytotoxic T lymphocytes (CTLs) have an important role in the control of HIV-1 replication during acute and chronic phases of an HIV-1 infection (5, 28, 33). On the other hand, HIV-1 can escape from the host immune system by various mechanisms. These may include the appearance of HIV-1 carrying escape mutations in its immunodominant CTL epitopes as well as Nef-mediated downregulation of HLA class I molecules. There is a growing body of evidence for the former mechanism, i.e., that CTLs targeting immunodominant HIV-1 epitopes select escape mutants in chronically HIV-1-infected individuals (18, 20, 36), whereas the latter mechanism was proved by demonstrating that HIV-1-specific CTLs fail to kill Nef-positive-HIV-1-infected CD4+ T cells but effectively kill Nef-defective-HIV-1-infected ones or that they suppress the replication of Nef-defective HIV-1 much more than that of Nef-positive HIV-1 (12, 13, 42, 45).It is speculated that HIV-1 immunodominant epitope-specific CTLs have the ability to suppress HIV-1 replication and effectively select escape mutants. However, the correlation between this ability of the CTLs and the appearance of escape mutants is still unclear, because it is not easy to evaluate the ability of HIV-1-specific CTLs to exert a strong immune pressure in vivo. To examine this ability, most previous studies measured the number of HIV-1-specific CTLs or CD8+ T cells and the CTL activity against target cells prepulsed with the epitope peptide or those infected with HIV-1 recombinant vaccinia virus (6, 7, 23, 46). However, the results obtained from such experiments do not reflect the ability of the CTLs to exert immune pressure in vivo. We and other groups previously utilized an assay to directly evaluate the ability of the CTLs to suppress HIV-1 replication in vitro (1, 17, 18, 42, 43). This assay may be better for evaluation of immune pressure by HIV-1-specific CTLs than other assays, because the ability of the CTLs to suppress HIV-1 replication is directly measured in cultures of HIV-1-infected CD4+ T cells incubated with HIV-1-specific CTL clones. But it still remains unknown whether this assay reflects immune pressure in vivo.In the present study, we investigated whether HIV-1-specific CTLs having a strong ability to suppress HIV-1 replication could positively select escape mutants. Since HLA-A*1101 is known to be an HLA allele relatively associated with a slow progression to AIDS (32), it is speculated that some HLA-A*1101-restricted CTLs would have a strong ability to suppress HIV-1 replication in vitro. Therefore, we first focused on 4 well-known HLA-A*1101-restricted CTL epitopes in the present study. We investigated the frequency of CTLs specific for these epitopes in chronically HIV-1-infected individuals, the ability of these CTLs to suppress HIV-1 replication in vitro, and whether the escape mutants were selected by the CTLs. Furthermore, we analyzed the expression of Programmed Death-1 (PD-1) on these CTLs ex vivo and antigen recognition of them.  相似文献   

8.
G protein-coupled receptors (GPCRs) are attractive targets for pharmaceutical research. With the recent determination of several GPCR X-ray structures, the applicability of structure-based computational methods for ligand identification, such as docking, has increased. Yet, as only about 1% of GPCRs have a known structure, receptor homology modeling remains necessary. In order to investigate the usability of homology models and the inherent selectivity of a particular model in relation to close homologs, we constructed multiple homology models for the A1 adenosine receptor (A1AR) and docked ∼2.2 M lead-like compounds. High-ranking molecules were tested on the A1AR as well as the close homologs A2AAR and A3AR. While the screen yielded numerous potent and novel ligands (hit rate 21% and highest affinity of 400 nM), it delivered few selective compounds. Moreover, most compounds appeared in the top ranks of only one model. These findings have implications for future screens.  相似文献   

9.
Widespread drug resistance calls for the urgent development of new antimalarials that target novel steps in the life cycle of Plasmodium falciparum and Plasmodium vivax. The essential subtilisin-like serine protease SUB1 of Plasmodium merozoites plays a dual role in egress from and invasion into host erythrocytes. It belongs to a new generation of attractive drug targets against which specific potent inhibitors are actively searched. We characterize here the P. vivax SUB1 enzyme and show that it displays a typical auto-processing pattern and apical localization in P. vivax merozoites. To search for small PvSUB1 inhibitors, we took advantage of the similarity of SUB1 with bacterial subtilisins and generated P. vivax SUB1 three-dimensional models. The structure-based virtual screening of a large commercial chemical compounds library identified 306 virtual best hits, of which 37 were experimentally confirmed inhibitors and 5 had Ki values of <50 μm for PvSUB1. Interestingly, they belong to different chemical families. The most promising competitive inhibitor of PvSUB1 (compound 2) was equally active on PfSUB1 and displayed anti-P. falciparum and Plasmodium berghei activity in vitro and in vivo, respectively. Compound 2 inhibited the endogenous PfSUB1 as illustrated by the inhibited maturation of its natural substrate PfSERA5 and inhibited parasite egress and subsequent erythrocyte invasion. These data indicate that the strategy of in silico screening of three-dimensional models to select for virtual inhibitors combined with stringent biological validation successfully identified several inhibitors of the PvSUB1 enzyme. The most promising hit proved to be a potent cross-inhibitor of PlasmodiumSUB1, laying the groundwork for the development of a globally active small compound antimalarial.  相似文献   

10.
M36 is the first member of a novel class of potent HIV-1 entry inhibitors based on human engineered antibody domains (eAds). It exhibits broad inhibitory activity suggesting that its CD4-induced epitope is highly conserved. Here, we describe fine mapping of its epitope by using several approaches. First, a panel of mimotopes was affinity-selected from a random peptide library and potential m36-binding residues were computationally predicted. Second, homology modeling of m36 and molecular docking of m36 onto gp120 revealed potentially important residues in gp120-m36 interactions. Third, the predicted contact residues were verified by site-directed mutagenesis. Taken together, m36 epitope comprising three discontinuous sites including six key gp120 residues (Site C1: Thr123 and Pro124; Site C3: Glu370 and Ile371; Site C4: Met426 and Trp427) were identified. In the 3D structure of gp120, the sites C1 and C4 are located in the bridging sheet and the site C3 is within the β15-α3 excursion, which play essential roles for the receptor- and coreceptor-binding and are major targets of neutralizing antibodies. Based on these results we propose a precise localization of the m36 epitope and suggest a mechanism of its broad inhibitory activity which could help in the development of novel HIV-1 therapeutics based on eAds.  相似文献   

11.
Abstract

A hierarchical procedure, using a “bottom-up” strategy and combining (i) a probabilistic approach for estimating all possible starting structures, (ii) restrained molecular mechanics algorithms for preliminary selection of all energetically preferred conformers, as well as (iii) quantum chemical computations for refining their geometry, was used to study the structural properties of the HIV-MN neutralizing epitope in terms of NMR spectroscopy data. As a result, only one of initial structures matching the experimental and theoretical data was found to be well-ground for implementing the function of immunoreactive conformation of the virus immunogenic crown. The geometric parameters of this structure in water solution were shown to correspond to a double β-turn conformation similar to that revealed in crystal for synthetic molecules imitating the central region of the HIV-MN V3 loop. The following conclusion was drawn from the comparative analysis of simulated structure with the one computed previously: the HIV-MN immunogenic tip has some inherent conformational flexibility that manifests at the alterations of hexapeptide environment and leads to the structural transitions changing the local conformation of the stretch of interest but retaining its spatial main chain fold. As a matter of record, the high resolution 3D structure model for the HIV-MN principal neutralization site was constructed, and its geometric parameters were compared with the corresponding characteristics of conformers derived earlier for describing the conformational features of immunogenic tip of gp120 from Thailand HIV-1 isolate.

The results are discussed in the light of literature data on HIV-1 neutralizing epitope structure.  相似文献   

12.
In nutrition research the number of human in vivo experiments is limited because of the many restrictions and the high costs of testing in humans. Up to now predictive computer models aiming to enhance research have been rare or too complex, with many nonmeasurable adjustable parameters. This study aimed to develop a basic physicochemical computer model for a first quantitative interpretation of results obtained from in vivo intestinal experiments with bacteria. This new modeling approach is validated with results obtained from gut infection studies in vivo. The design of the model is described, and its ability to reproduce experimental data is evaluated. The model predictions are compared with new experimental data. The phenomena that take place in the gastrointestinal tract are summarized by model constants for growth, adherence, and release of bacteria. Although the model is far from describing all details and many processes in the intestine are combined, the model calculation results lead to reasonable conclusions and interesting hypotheses. One of these hypotheses concluded from the model outcomes is that Escherichia coli bacteria have a much lower intestinal growth rate in humans than in rats. Extra laboratory validation experiments proved the reliability of this hypothesis predicted by the model. In addition, the known protective effect of dietary calcium and detrimental effect of clindamycin on the growth and adherence of Salmonella bacteria could be quantified. From these results it is clear that the model enhances the interpretation of in vivo gastrointestinal experiments and will facilitate research trajectories towards new functional foods that improve resistance to pathogenic bacteria in humans.  相似文献   

13.
Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs’ roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.  相似文献   

14.
Epitope mapping of a MHC class I-restricted cytotoxic T cell response to nef, a regulatory protein of HIV, was performed with fresh PBMC from HIV-seropositive donors and target cells pulsed with a panel of overlapping peptides of the nef protein. These nef-specific CTL recognized a synthetic peptide of 10 residues derived from a nonamphipathic, highly conserved region of the nef protein in association with the HLA A3.1 molecule. Using human cell transfectants expressing mutations of the A3 molecule, we demonstrated that the amino acid at position 152 of the A3.1 molecule appears to be critical for detection of this response. Thus, rapid analysis of the epitopes of HIV proteins stimulating CTL responses can be achieved using a combination of fresh donor PBMC and target cells pulsed with synthesized peptides.  相似文献   

15.
The combination of host immune responses and use of antiretrovirals facilitate partial control of human immunodeficiency virus type 1 (HIV-1) infection and result in delayed progression to Acquired Immunodeficiency Syndrome (AIDS). Both treatment and host immunity impose selection pressures on the highly mutable HIV-1 genome resulting in antiretroviral resistance and immune escape. Researchers have shown that antiretroviral resistance mutations can shape cytotoxic T-lymphocyte immunity by altering the epitope repertoire of HIV infected cells. Here it was discovered that an important antiretroviral resistance mutation, L90M in HIV protease, occurs at lower frequencies in hosts that harbor the B*15, B*48 or A*32 human leukocyte antigen subtypes. A likely reason is the elucidation of novel epitopes by L90M. NetMHCPan predictions reveal increased affinity of the peptide spanning the HIV protease region, PR 89–97 and PR 90–99 to HLA-B*15/B*48 and HLA-A*32 respectively due to the L90M substitution. The higher affinity could increase the chance of the epitope being presented and recognized by Cytotoxic T-lymphocytes and perhaps provide additional immunological pressures in the presence of antiretroviral attenuating mutations. This evidence supports the notion that knowledge of HLA allotypes in HIV infected individuals could augment antiretroviral treatment by the elucidation of epitopes due to antiretroviral resistance mutations in HIV protease.  相似文献   

16.

Background

CD8+ T cell responses are often detected at large magnitudes in HIV-infected subjects, and eliciting these responses is the central aim of many HIV-1 vaccine strategies. Population differences in CD8+ T cell epitope specificity will need to be understood if vaccines are to be effective in multiple geographic regions.

Methodology/Principal Findings

In a large Kenyan cohort, we compared responsive CD8+ T cell HIV-1 Env overlapping peptides (OLPs) to Best Defined Epitopes (BDEs), many of which have been defined in clade B infection. While the majority of BDEs (69%) were recognized in this population, nearly half of responsive OLPs (47%) did not contain described epitopes. Recognition frequencies of BDEs were inversely correlated to epitopic sequence differences between clade A1 and BDE (P = 0.019), and positively selected residues were more frequent in “new” OLPs (without BDEs). We assessed the impact of HLA and TAP binding on epitope recognition frequencies, focusing on predicted and actual epitopes in the HLA B7 supertype.

Conclusions/Significance

Although many previously described CD8 epitopes were recognized, several novel CD8 epitopes were defined in this population, implying that epitope mapping efforts have not been completely exhausted. Expansion of these studies will be critical to understand population differences in CD8 epitope recognition.  相似文献   

17.
18.
The increase in antibiotic-resistant strains of pathogens has created havoc worldwide. These antibiotic-resistant pathogens require potent drugs for their inhibition. Lipopeptides, which are produced as secondary metabolites by many microorganisms, have the ability to act as potent safe drugs. Lipopeptides are amphiphilic molecules containing a lipid chain bound to the peptide. They exhibit broad-spectrum activities against both bacteria and fungi. Other than their antimicrobial properties, they have displayed anti-cancer properties as well, but their mechanism of action is not understood. In silico drug design uses computer simulation to discover and develop new drugs. This technique reduces the need of expensive and tedious lab work and clinical trials, but this method becomes a challenge due to complex structures of lipopeptides. Specific agonists (ligands) must be identified to initiate a physiological response when combined with a receptor (lipopeptide). In silico drug design and homology modeling talks about the interaction between ligands and the binding sites. This review summarizes the mechanism of selected lipopeptides, their respective ligands, and in silico drug design.  相似文献   

19.
20.
Establishment of long-lived cellular reservoirs of HIV-1 represents a major therapeutic challenge to virus eradication. In this study, we utilized a human primary cell model of HIV-1 latency to evaluate the requirements for efficient virus reactivation from, and the selective elimination of, latently infected human T cells. Ectopic expression of BCL2 supported the replication and spread of R5-tropic HIV-1 in activated CD4+ T cells. After IL-2 withdrawal, the HIV-1-infected T cells survived as resting cells for several months. Unexpectedly, these resting T cells continue to produce detectable levels of infectious virus, albeit at a lower frequency than cells maintained in IL-2. In the presence of HIV-1 inhibitors, reactivation of the resting T cells with γc-cytokines and allogeneic dendritic cells completely extinguished HIV-1 infectivity. We also evaluated the ability of the bacterial LukED cytotoxin to target and kill CCR5-expressing cells. After γc-cytokine stimulation, LukED treatment eliminated both HIV-1-infected resting cells and the non-infected CCR5+ cells. Importantly, complete clearance of in vitro HIV-1 reservoirs by LukED required a lower threshold of cytokine signals relative to HIV-1 inhibitors. Thus, the primary T cell-based HIV-1 latency model could facilitate the development of novel agents and therapeutic strategies that could effectively eradicate HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号