首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During 2006–2008, 572 isolates of Phytophthora capsici were collected from seven provinces in China, and their sensitivities to three carboxylic acid amides (CAA), dimethomorph, flumorph and pyrimorph were determined. Of these isolates, 90 isolates without a history of exposure to CAA fungicides (CAAs) were used to set up the baseline sensitivity. Baseline EC50 values ranged from 0.122 to 0.203 (mean ± SD, 0.154 ± 0.022) μg ml?1 for dimethomorph, from 0.301 to 0.487 (mean ± SD, 0.373 ± 0.043) μg ml?1 for flumorph and from 0.557 to 0.944 (mean ± SD, 0.712 ± 0.082) μg ml?1 for pyrimorph, respectively. The other 482 isolates were tested with a single discriminatory dose and were completely inhibited at 0.5 μg ml?1 of dimethomorph. Four CAA‐resistant mutants were generated by repeated exposure to dimethomorph in vitro. As compared to the parental wild‐type isolate, the four CAA‐resistant mutants showed similar fitness in hyphal growth, sporulation in vitro and pathogenicity in vivo. Mutants resistant to CAAs in the in vitro assay caused visible lesions on pepper stems or roots treated with the recommended dose of dimethomorph. Previous studies upon the mode of action of CAAs suggested that these fungicides maybe inhibit phospholipid biosynthesis and that the primary target could be the cholinephosphotranferase (CPT), which is referred to aminoalcoholphosphotransferases (AAPTs). We sequenced and analyzed two CPT (AAPT1 and AAPT2) genes in P. capsici. Based on the cDNA sequence, we found that the AAPT1 and AAPT2 gene span 1538 and 1459 bp and were interrupted by five and three introns, respectively. There was no difference between the parental wild‐type isolate and the four CAA‐resistant mutants in the amino acid sequences of AAPT1 and AAPT2 gene. So, it was assumed that the resistance to dimethomorph was not due to mutations in the amino acid sequence of these two possible target genes.  相似文献   

2.
Pyrimorph is a novel fungicide with high activity against the plant pathogen Phytophthora capsici. We investigated the risk that P. capsici can develop resistance to pyrimorph. The baseline sensitivities of 226 P. capsici isolates, tested by mycelial growth inhibition, showed a unimodal distribution with a mean EC50 value of 1.4261 (±0.4002) µg/ml. Twelve pyrimorph-resistant mutants were obtained by repeated exposure to pyrimorph in vitro with a frequency of approximately 1×10−4. The resistance factors of the mutants ranged from 10.67 to 56.02. Pyrimorph resistance of the mutants was stable after 10 transfers on pyrimorph-free medium. Fitness in sporulation, cystospore germination, and pathogenicity in the pyrimorph-resistant mutants was similar to or less than that in the parental wild-type isolates. On detached pepper leaves and pepper plants treated with the recommended maximum dose of pyrimorph, however, virulence was greater for mutants with a high level of pyrimorph resistance than for the wild type. The results suggest that the risk of P. capsici developing resistance to pyrimorph is low to moderate. Among mutants with a high level of pyrimorph resistance, EC50 values for pyrimorph and CAA fungicides flumorph, dimethomorph, and mandipropamid were positively correlated. This indicated that point mutations in cellulose synthase 3 (CesA3) may confer resistance to pyrimorph. Comparison of CesA3 in isolates with a high level of pyrimorph resistance and parental isolates showed that an amino acid change from glutamine to lysine at position 1077 resulted in stable, high resistance in the mutants. Based on the point mutations, an allele-specific PCR method was developed to detect pyrimorph resistance in P. capsici populations.  相似文献   

3.
During 2007 and 2008, 392 isolates of Plasmopara viticola were collected from 11 regions in seven provinces in China, and their sensitivities to metalaxyl and dimethomorph were determined by the floating leaf disk technique. Among all isolates, 13% were classified as sensitive, 26% as low‐level resistant, and 61% as resistant to metalaxyl. Of the 392, 85 were from vineyards never treated with carboxylic acid amide fungicides; these isolates were used to determine the baseline sensitivity to dimethomorph, and their EC50 values ranged from 0.01 to 0.21 (mean ± SD, 0.11 ± 0.04) μg/ml. The other 307 isolates were completely inhibited by a single discriminatory dose of 1.6 μg/ml of dimethomorph.  相似文献   

4.
The benzimidazole fungicide thiophanate-methyl is commonly applied to control leaf mould of tomato caused by Cladosporium fulvum in China. In this study, 32 isolates of C. fulvum were examined for their sensitivities to thiophanate-methyl, and two benzimidazole-resistant (BenR) phenotypes BenR1 and BenR2 were identified. The BenR1 isolates were resistant to thiophanate-methyl, but were more sensitive to the phenylcarbamate fungicide diethofencarb than the wild-type isolates. The BenR2 isolates resistant to thiophanate-methyl were insensitive to diethofencarb. All tested isolates were sensitive to the dicarboximide fungicide iprodione. The complete beta-tubulin gene was isolated from this fungus to study its potential role in benzimidazole resistance. Analysis of the DNA sequence of the beta-tubulin gene showed that the BenR1 isolates had a point mutation at codon 198, causing a substitution of glutamic acid to alanine. In the BenR2 isolates, a point mutation at codon 200 causing a substitution of phenylalanine to tyrosine was detected. Based on these point mutations, a multiplex allele-specific PCR method was developed successfully for the first time to detect two point mutations at the beta-tubulin gene simultaneously in single PCR amplifications.  相似文献   

5.
We investigated the molecular basis of resistance of the obligate biotrophic grape powdery mildew fungus Uncinula necator to sterol demethylation-inhibiting fungicides (DMIs). The sensitivity of 91 single-spore field isolates of U. necator to triadimenol was assessed by using a leaf disc assay. Resistance factors (RF) ranged from 1.8 to 26.0. The gene encoding the target of DMIs (eburicol 14 alpha-demethylase) from five sensitive and seven resistant isolates was cloned and sequenced. A single mutation, leading to the substitution of a phenylalanine residue for a tyrosine residue at position 136, was found in all isolates exhibiting an RF higher than 5. No mutation was found in sensitive or weakly resistant (RF, < 5) isolates. An allele-specific PCR assay was developed to detect the mutation. Among the 91 isolates tested, only isolates with RF higher than 5 carried the mutation. Three of the 19 resistant isolates and all sensitive and weakly resistant isolates did not possess the mutation. The mutation at codon 136 is thus clearly associated with high levels of resistance to triadimenol.  相似文献   

6.
In this report, we describe the isolation, molecular genetic mapping, and phenotypic characterization of vaccinia virus mutants resistant to cytosine arabinoside (araC) and phosphonoacetic acid (PAA). At 37 degrees C, 8 microM araC was found to prevent macroscopic plaque formation by wild-type virus and to cause a 10(4)-fold reduction in viral yield. Mutants resistant to 8 microM araC were selected by serial passage of a chemically mutagenized viral stock in the presence of drug. Because recovery of mutants required that initial passages be performed under less stringent selective conditions, and because plaque-purified isolates were found to be cross-resistant to 200 micrograms of PAA per ml, it seemed likely that resistance to araC required more than one genetic lesion. This hypothesis was confirmed by genetic and physical mapping of the responsible mutations. PAAr was accorded by the acquisition of one of three G-A transitions in the DNA polymerase gene which individually alter cysteine 356 to tyrosine, glycine 372 to aspartic acid, or glycine 380 to serine. AraCr was found to require one of these substitutions plus an additional T-C transition within codon 171 of the DNA polymerase gene, a change which replaces the wild-type phenylalanine with serine. Congenic viral stocks carrying one of the three PAAr lesions, either alone or in conjunction with the upstream araCr lesion, in an otherwise wild-type background were generated. The PAAr mutations conferred nearly complete resistance to PAA, a slight degree of resistance to araC, hypersensitivity to aphidicolin, and decreased spontaneous mutation frequency. Addition of the mutation at codon 171 significantly augmented araC resistance and aphidicolin hypersensitivity but caused no further change in mutation frequency. Several lines of evidence suggest that the PAAr mutations primarily affect the deoxynucleoside triphosphate-binding site, whereas the codon 171 mutation, lying within a conserved motif associated with 3'-5' exonuclease function, is postulated to affect the proofreading exonuclease of the DNA polymerase.  相似文献   

7.
Proper disease control is very important to minimize yield losses caused by oomycetes in many crops. Today, oomycete control is partially achieved by breeding for resistance, but mainly by application of single-site mode of action fungicides including the carboxylic acid amides (CAAs). Despite having mostly specific targets, fungicidal activity can differ even in species belonging to the same phylum but the underlying mechanisms are often poorly understood. In an attempt to elucidate the phylogenetic basis and underlying molecular mechanism of sensitivity and tolerance to CAAs, the cellulose synthase 3 (CesA3) gene was isolated and characterized, encoding the target site of this fungicide class. The CesA3 gene was present in all 25 species included in this study representing the orders Albuginales, Leptomitales, Peronosporales, Pythiales, Rhipidiales and Saprolegniales, and based on phylogenetic analyses, enabled good resolution of all the different taxonomic orders. Sensitivity assays using the CAA fungicide mandipropamid (MPD) demonstrated that only species belonging to the Peronosporales were inhibited by the fungicide. Molecular data provided evidence, that the observed difference in sensitivity to CAAs between Peronosporales and CAA tolerant species is most likely caused by an inherent amino acid configuration at position 1109 in CesA3 possibly affecting fungicide binding. The present study not only succeeded in linking CAA sensitivity of various oomycetes to the inherent CesA3 target site configuration, but could also relate it to the broader phylogenetic context.  相似文献   

8.
Multiple demethylation-inhibiting (DMI) fungicides are used to control pecan scab, caused by Venturia effusa. To compare the efficacy of various DMI fungicides on V. effusa, field trials were conducted at multiple locations applying fungicides to individual pecan terminals. In vitro assays were conducted to test the sensitivity of V. effusa isolates from multiple locations to various concentrations of tebuconazole. Both studies confirmed high levels of resistance to tebuconazole. To investigate the mechanism of resistance, two copies of the CYP51 gene, CYP51A and CYP51B, of resistant and sensitive isolates were sequenced and scanned for mutations. In the CYP51A gene, mutation at codon 444 (G444D), and in the CYP51B gene, mutations at codon 357 (G357H) and 177 (I77T/I77L) were found in resistant isolates. Expression analysis of CYP51A and CYP51B revealed enhanced expression in the resistant isolates compared to the sensitive isolates. There were 3.0- and 1.9-fold increases in gene expression in the resistant isolates compared to the sensitive isolates for the CYP51A and CYP51B genes, respectively. Therefore, two potential mechanisms—multiple point mutations and gene over expression in the CYP51 gene of V. effusa isolates—were revealed as likely reasons for the observed resistance in isolates of V. effusa to tebuconazole.  相似文献   

9.
The somatic recombinogenic activity of the phenylpyrrole fungicide fludioxonil, in diploid Aspergillus nidulans was found similar to that caused by aromatic hydrocarbon and dicarboximide fungicides (AHDFs), such as iprodione, chlozolinate and tolclofos–methyl. All these fungicides not only increased the number of mitotic recombinants but also provided similar appearance, small sectors, of white and yellow mitotic recombination products. Fludioxonil highly resistant strains (resistant factor approximately 5000) of Botrytis cinerea were isolated at high frequency (1.08 × 10−5). Study of cross-resistance patterns of mutant strains to other fungicides, revealed cross-resistance of fludioxonil with dicarboximides (iprodione, procymidone, and chlozolinate) and aromatic hydrocarbons, such as tolclofos–methyl, pentachloronitrobenzene (PCNB), tecnazene and chloroneb. The positive cross-resistance relationships found between phenylpyrroles and members of the AHDFs and their ability to increase mitotic instability in diploid A. nidulans , indicate that phenylpyrroles should be included with AHDFs. A study of fitness parameters in wild-type and representative fludioxonil-resistant mutants of B. cinerea , showed that the mutation(s) leading to fludioxonil resistance may or may not affect some fitness-determining characteristics, such as sensitivity to high osmolarity, growth rate, conidial germination and germ-tube elongation. Pathogenicity tests on cucumber seedlings showed that an osmosensitive representative strain of B. cinerea , resistant to fludioxonil, was as virulent as the wild-type strain. The phenylpyrrole fungicide was ineffective, even in high concentrations, to control grey mould caused by this isolate.  相似文献   

10.
Spreading of resistance to antibiotics is of great concern due to the increasing rate of isolation of multiresistant pathogens. Since commensal bacteria may transfer determinants of resistance to pathogens, studies on development of resistance should include also lactobacilli. Resistance to macrolides, penicillins and tetracycline was determined in 40 isolates of Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus crispatus, and Lactobacillus casei isolated from faeces of apparently healthy volunteers. Frequency of mutation and changes in susceptibility after serial exposure to these antibiotics at concentrations of 4× and 8× MIC were evaluated in susceptible isolates. Acquired resistance was defined as an increment in MIC values of at least four times in respect to the pre-selection values. Resistance to macrolides and/or tetracycline was identified in 14 and 4 isolates, respectively. ermB gene and A2058G mutation in 23S rRNA were detected in macrolide resistant isolates. Frequencies of mutation of susceptible isolates (n=26) were lower for ampicillin and erythromycin than for tetracycline. Serial exposure to antibiotics led to selection of resistant mutants. However, acquired resistance was rather unstable and was lost after subcultures in antibiotic-free medium in most mutants. Resistance to erythromycin was associated to a A2058G mutation in 23S rRNA. In conclusion, results indicate that resistance to macrolides and tetracycline is present among intestinal lactobacilli. Decrease in susceptibility following serial exposure to antibiotics might occur in lactobacilli, in a strain- and antibiotic-dependent way. Since lactobacilli are often used as probiotics, their ability to acquire resistance should be evaluated for isolates candidate to be included in probiotics based products.  相似文献   

11.
Quinolone resistance due to reduced target enzyme expression   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

12.
Phytophthora nicotianae causes black shank, one of the most important diseases of tobacco worldwide. Metalaxyl and dimethomorph are two fungicides which have been used widely for control of this disease in Henan province, China. A study was conducted to determine the level of metalaxyl and dimethomorph sensitivity in isolates of P. nicotianae from tobacco in Henan province and mating type structure of the pathogen population. A total of 32 isolates were isolated from 11 cities in Henan province. Sensitivity of all isolates to metalaxyl and dimethomorph was tested in vitro, and mating types of all isolates were determined by pairing known A1 and A2 testers. For metalaxyl, EC50 values of 32 P. nicotianae isolates ranged from 0.08 to 2.82 mg/L. Sixteen isolates were sensitive, and the rest were intermediate to metalaxyl. None were classified as resistant isolates. For dimethomorph, EC50 values of 32 P. nicotianae isolates ranged from 0.07 to 0.59 mg/L. All isolates were sensitive to dimethomorph. Thirty‐one isolates were A2 mating type, and one isolate was A0 mating type. No isolate was identified as A1 mating type. These results suggested that the P. nicotianae population in Henan province has already exhibited intermediate resistance to metalaxyl and was still sensitive to dimethomorph, and asexual reproduction was the major form of reproduction for the P. nicotianae population.  相似文献   

13.
【目的】了解华南地区瓜类疫霉(Phytophthora melonis)对甲霜灵的田间抗药性。【方法】2007-2010年从广西、广东两省(区)9个市冬瓜和黄瓜产区采集疫病样品,分离纯化瓜类疫霉,分别采用菌落生长速率法和叶盘漂浮法测定瓜类疫霉对甲霜灵的敏感性,并用药剂驯化方法从敏感性菌株诱导瓜类疫霉抗甲霜灵突变体。【结果】从9个市24个样点共分离纯化获得193株瓜类疫霉,抗药性检测结果表明,敏感菌株、中等抗性菌株和抗性菌株分别占测试菌株的29.0%、18.1%和52.8%;不同地区、不同寄主分离的菌株的抗性频率和抗性水平差异较大,来源于广东的菌株抗性频率和抗性水平一般高于来源广西的菌株,分离自黄瓜的菌株高于分离自冬瓜的菌株,大部分样点抗性菌株占据优势群体,个别菌株的抗性指数高达4226.9,叶盘漂浮法测定结果和菌落生长速率法相似;在含药平板上对敏感菌株进行甲霜灵抗性诱导结果表明,从60%的敏感菌株中成功诱导出对甲霜灵抗性稳定的突变体,突变体的抗性水平为敏感性亲本的189-407倍;9株来源于未施用过甲霜灵等苯基酰胺类杀菌剂样点的菌株均为敏感性菌株,其EC50值为0.0429-0.5461μg/mL,将它们EC50的平均值0.3200±0.1617μg/mL确定为华南地区瓜类疫霉对甲霜灵的敏感性基线;对两个样点的监测结果表明,瓜类疫霉抗甲霜灵菌株的频率及抗性指数有逐年增高趋势。【结论】华南广西和广东两省(区)瓜类疫霉对甲霜灵抗性普遍发生,瓜类疫霉对甲霜灵抗药性产生与其和药剂的接触密切相关。瓜类疫霉敏感性基线的建立,可为今后瓜类疫霉抗甲霜灵的评价和进一步监测提供科学依据。  相似文献   

14.
The emergence of HBe-minus hepatitis B virus (HBV) mutants, usually through a UAG nonsense mutation at codon 28 of the precore region, helps the virus to survive the anti-HBe immune response of the host. Host and viral factors that predispose to the emergence of such mutants are not well characterized. The fact that the precore region forms a hairpin structure essential for the packaging of viral pregenomic RNA may explain the extremely high prevalence of the UAG mutation at codon 28. It converts a wobble U-G pair in the packaging signal between nucleotide 3 of codon 15 (CCU) and nucleotide 2 of codon 28 (UGG) into a U-A pair. Since genotype A of HBV has a CCC sequence at codon 15, the UAG mutation would, instead, disrupt a C-G pair present in the wild-type virus. This alteration was shown by transfection experiments to greatly compromise the packaging of pregenomic RNA. The implication of this finding was elucidated by molecular epidemiological studies. Genotype A was found to be the most prevalent genotype in the wild-type virus populations in France but was found in only 1 of the 46 isolates of HBe-minus mutants found there. These mutants were contributed chiefly by genotype D, the second most prevalent genotype in France, which is characterized by a CCU sequence at codon 15. The role of the single nucleotide at codon 15 was confirmed by the finding of the single genotype A isolate in which both wild-type and mutant viruses were present. Interestingly, nearly all of the mutants had a codon 15 sequence of CCU instead of the CCC present in the wild-type viruses. Our results suggest that genotype A of HBV rarely circulates as HBe-minus mutants, probably because of a requirement for a simultaneous sequence change at codon 15. These data, together with the virtual absence of genotype A in the Chinese samples examined, may provide some insights into the uneven prevalence of HBe-minus mutants in the world.  相似文献   

15.
Neurospora crassa osmosensitive (os) mutants are sensitive to high osmolarity and therefore are unable to grow on medium containing 4% NaCl. We found that os-2 and os-5 mutants were resistant to the phenylpyrrole fungicides fludioxonil and fenpiclonil. To understand the relationship between osmoregulation and fungicide resistance, we cloned the os-2 gene by using sib selection. os-2 encodes a putative mitogen-activated protein (MAP) kinase homologous to HOG1 and can complement the osmosensitive phenotype of a Saccharomyces cerevisiae hog1 mutant. We sequenced three os-2 alleles and found that all of them were null with either frameshift or nonsense point mutations. An os-2 gene replacement mutant also was generated and was sensitive to high osmolarity and resistant to phenylpyrrole fungicides. Conversely, os-2 mutants transformed with the wild-type os-2 gene could grow on media containing 4% NaCl and were sensitive to phenylpyrrole fungicides. Fludioxonil stimulated intracellular glycerol accumulation in wild-type strains but not in os-2 mutants. Fludioxonil also caused wild-type conidia and hyphal cells to swell and burst. These results suggest that the hyperosmotic stress response pathway of N. crassa is the target of phenylpyrrole fungicides and that fungicidal effects may result from a hyperactive os-2 MAP kinase pathway.  相似文献   

16.
Pepper Phytophthora blight (PPB), caused by Phytophthora capsici, is an important disease of pepper in China. The extensive application of metalaxyl has resulted in widespread resistance to this fungicide in field. This study has evaluated the activities of several fungicides against the mycelial growth and sporangium germination of metalaxyl‐sensitive and metalaxyl‐resistant P. capsici isolates by determination of EC50 values. The results showed that the novel carboxylic acid amide (CAA) fungicide mandipropamid exhibited excellent inhibitory activity against PPB both in vitro and in vivo, with averagely EC50 values of 0.075 and 0.004 μg/ml in mycelial growth and sporangium germination, respectively, and over 88% efficacy in controlling PPB. The other three CAA fungicides also provided over 70% efficacy in controlling PPB. The mycelial growth was less sensitive to quinone outside inhibitor (QoI) fungicides azoxystrobin and trifloxystrobin than that of sporangium germination in P. capsici isolates. However, azoxystrobin and trifloxystrobin provided over 80% efficacy in controlling PPB. It was noted that propamocarb and cymoxanil did not exhibit activity against the mycelial growth or sporangium germination of P. capsici isolates in the in vitro tests, with over 70% efficacy in controlling PPB. The new fungicide mixture 62.5 g/l fluopicolide + 625 g/l propamocarb (trade name infinito, 687.5 g/l suspension concentrate (SC)) produced over 88% efficacy in controlling PPB caused by both metalaxyl‐sensitive and metalaxyl‐resistant isolates. The data of this study also proved that there was obviously no cross‐resistance between metalaxyl and the other tested fungicides. Therefore, these fungicides should be good alternatives to metalaxyl for the control of PPB and management of metalaxyl resistance.  相似文献   

17.
Five carboxin-resistant mutants from Aspergillus oryzae were characterized by the sensitivities of their mycelial growth and succinate dehydrogenase (SDH) activity to carboxin and three related fungicides. Despite a significant resistance to carboxin, exhibited by all the mutants, their patterns of sensitivity to the other fungicides was distinct. This provides clues to the molecular interaction between SDH and these fungicides.  相似文献   

18.
Low and high levels of resistance to the benzimidazole fungicides benomyl and thiophanate-methyl were observed in field isolates of Monilinia fructicola, which is the causative agent of brown rot of stone fruit. Isolates that had low levels of resistance (hereafter referred to as LR isolates) and high levels of resistance (hereafter referred to as HR isolates) were also cold and heat sensitive, respectively. Results from microsatellite DNA fingerprints showed that genetic identities among the populations of sensitive (S), LR, and HR isolates were very high (>0.96). Analysis of DNA sequences of the beta-tubulin gene showed that the LR isolates had a point mutation at codon 6, causing a replacement of the amino acid histidine by tyrosine. Codon 198, which encodes a glutamic acid in S and LR isolates, was converted to a codon for alanine in HR isolates. Based on these point mutations in the beta-tubulin gene, allele-specific PCR assays were developed for rapid detection of benzimidazole-resistant isolates of M. fructicola from stone fruit.  相似文献   

19.
Quinone outside inhibiting (QoI) fungicides represent one of the most widely used groups of fungicides used to control agriculturally important fungal pathogens. They inhibit the cytochrome bc1 complex of mitochondrial respiration. Soon after their introduction onto the market in 1996, QoI fungicide-resistant isolates were detected in field plant pathogen populations of a large range of species. However, there is still little understanding of the processes driving the development of QoI fungicide resistance in plant pathogens. In particular, it is unknown whether fungicide resistance occurs independently in isolated populations or if it appears once and then spreads globally by migration. Here, we provide the first case study of the evolutionary processes that lead to the emergence of QoI fungicide resistance in the plant pathogen Plasmopara viticola. Sequence analysis of the complete cytochrome b gene showed that all resistant isolates carried a mutation resulting in the replacement of glycine by alanine at codon 143 (G143A). Phylogenetic analysis of a large mitochondrial DNA fragment including the cytochrome b gene (2,281 bp) across a wide range of European P. viticola isolates allowed the detection of four major haplotypes belonging to two distinct clades, each of which contains a different QoI fungicide resistance allele. This is the first demonstration that a selected substitution conferring resistance to a fungicide has occurred several times in a plant-pathogen system. Finally, a high population structure was found when the frequency of QoI fungicide resistance haplotypes was assessed in 17 French vineyards, indicating that pathogen populations might be under strong directional selection for local adaptation to fungicide pressure.  相似文献   

20.
Abstract In order to study the role of gyrB in antibiotic resistance in post-ciprofloxacin therapy fluoroquinolone-resistant clinical isolates of Salmonella typhimurium , plasmid pBP548, which contains the Escherichia coli gyrB gene, was used in complementation studies. In a heterodiploid strain, the wild-type (quinolone sensitive) allele is dominant over the resistant allele therefore, eleven clinical isolates were complemented with gyrB encoded on pBP548. Only one transformant, L18pBP548, exhibited increased susceptibility to the quinolones nalidixic acid, ciprofloxacin and sparfloxacin. The amino acid sequence of the gyrase B protein from a wild-type and the pre-therapy S. typhimurium (deduced from the nucleotide sequence) was identical to that of E. coli from codons 436 to 470; however, a point mutation was identified in codon 463 of gyrB of the quinolone-resistant post-therapy isolate L18, giving rise to an amino acid substitution of serine to tyrosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号