首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coltman and Slate (2003) recently performed a meta-analysis on studies that investigated the association between genetic variation at microsatellite loci and phenotypic trait variation. One factor not explicitly addressed in their meta-analysis is the actual estimation of genome-wide heterozygosity via molecular markers. Many authors still associate marker-estimated heterozygosity with genome-wide heterozygosity, despite allozyme-based evidence that such correlations are usually very weak or nonexistent. Here, we show that genome-wide heterozygosity is poorly estimated not only by allozymes but also by microsatellite loci and by single-nucleotide polymorphisms (SNPs). Thus, associations between fitness (or other phenotypes) and heterozygosity should be established firmly on causative factors and not on simple correlations.  相似文献   

2.
Several interspecific Passiflora hybrids are produced in the northern hemisphere for the ornamental plant market. In Brazil, production of passion flower hybrids is limited to the introgression of genes into the main cultivated species, yellow passion fruit, to be used as rootstocks. Confirmation of hybridization in the initial developmental stage is important for breeding perennial and sub-perennial plants, such as passion flowers, reducing time and costs in plant stock maintenance. In order to obtain F? hybrids with ornamental potential, four species of Passiflora (P. alata, P. gardneri, P. gibertii, and P. watsoniana) from the Active Germplasm Bank at UESC were hybridized. Flower buds, in pre-anthesis, of the genitors were previously protected, and the female buds were emasculated. To confirm hybridization, the genomic DNA of the genitor species and the supposed hybrids was extracted and RAPD primers were used to obtain molecular markers and select passion flower interspecific hybrids. Eight primers were used to confirm hybrids derived from P. gardneri with P. alata, P. watsoniana with P. alata, P. watsoniana with P. gardneri, and P. gardneri with P. gibertii; 75, 50, 45, and 46% of the informative bands, respectively, confirmed the hybrid nature of these plants. The RAPD technique was effective in the early identification of hybrids; this will be useful for development of hybrid Passiflora progeny.  相似文献   

3.
It has been theorized that in cross-pollinated polyploid species hybrid vigor is maximized by the frequent occurrence of more than two alleles per chromosomal locus. In polyploid crops this condition of maximum heterozygosity has been reported to be associated with increased yield and optimum field performance. We report herein the first direct test of the maximum heterozygosity hypothesis. Molecular markers were used to examine the association between maximum heterozygosity and several components of yield in three different populations of tetraploid potatoes. The results indicate that the value of maximum heterozygosity is not universal but dependent on the genetic background of the material under evaluation. In a cross between adapted breeding lines, homozygosity was negatively correlated with tuber yield, and maximum heterozygosity was positively correlated with the proportion of tuber yield in the large-size fraction. In contrast, in crosses between adapted and unadapted parents, maximum heterozygosity had no detectable effect on any character. Quantitative trait locus (QTL) analysis of the three populations reveals that, regardless of the genetic background, additive genetic effects are more strongly correlated with the components of yield than are any measures of heterozygosity and that some common QTLs may be influencing yield in all three populations.  相似文献   

4.
In Coffea arabica (arabica coffee), the phenotypic as well as genetic variability has been found low because of the narrow genetic basis and self fertile nature of the species. Because of high similarity in phenotypic appearance among the majority of arabica collections, selection of parental lines for inter-varietals hybridization and identification of resultant hybrids at an early stage of plant growth is difficult. DNA markers are known to be reliable in identifying closely related cultivars and hybrids. Sequence Related Amplified Polymorphism (SRAP) is a new molecular marker technology developed based on PCR. In this paper, sixty arabica-hybrid progenies belonging to six crosses were analyzed using 31 highly polymorphic SRAP markers. The analysis revealed seven types of SRAP marker profiles which are useful in discriminating the parents and hybrids. The number of bands amplified per primer pair ranges from 6.13 to 8.58 with average number of seven bands. Among six hybrid combinations, percentage of bands shared between hybrids and their parents ranged from 66.29% to 85.71% with polymorphic bands varied from 27.64% to 60.0%. Percentage of hybrid specific fragments obtained in various hybrid combinations ranged from 0.71% to 10.86% and ascribed to the consequence of meiotic recombination. Based on the similarity index calculation, it was observed that F1 hybrids share maximum number of bands with the female parent compared to male parent. The results obtained in the present study revealed the effectiveness of SRAP technique in cultivar identification and hybrid analysis in this coffee species.  相似文献   

5.
The identification of superior hybrids is important for the success of a hybrid breeding program. However, field evaluation of all possible crosses among inbred lines requires extremely large resources. Therefore, efforts have been made to predict hybrid performance (HP) by using field data of related genotypes and molecular markers. In the present study, the main objective was to assess the usefulness of pedigree information in combination with the covariance between general combining ability (GCA) and per se performance of parental lines for HP prediction. In addition, we compared the prediction efficiency of AFLP and SSR marker data, estimated marker effects separately for reciprocal allelic configurations (among heterotic groups) of heterozygous marker loci in hybrids, and imputed missing AFLP marker data for marker-based HP prediction. Unbalanced field data of 400 maize dent × flint hybrids from 9 factorials and of 79 inbred parents were subjected to joint analyses with mixed linear models. The inbreds were genotyped with 910 AFLP and 256 SSR markers. Efficiency of prediction (R 2) was estimated by cross-validation for hybrids having no or one parent evaluated in testcrosses. Best linear unbiased prediction of GCA and specific combining ability resulted in the highest efficiencies for HP prediction for both traits (R 2 = 0.6–0.9), if pedigree and line per se data were used. However, without such data, HP for grain yield was more efficiently predicted using molecular markers. The additional modifications of the marker-based approaches had no clear effect. Our study showed the high potential of joint analyses of hybrids and parental inbred lines for the prediction of performance of untested hybrids.  相似文献   

6.
Dasmahapatra KK  Lacy RC  Amos W 《Heredity》2008,100(3):286-295
In the absence of detailed pedigree records, researchers have attempted to estimate individuals' levels of inbreeding using molecular markers, generally making use of heterozygosity measures based on microsatellite markers. Here we report and validate a method for estimating an individual's inbreeding coefficient, f, using amplified fragment length polymorphism (AFLP) markers. We use simulations to confirm that our measure scales appropriately with f when allele frequencies can be estimated from a subset of outbred individuals. We also present an approach for obtaining satisfactory estimates even in the absence of an independent set of known outbred individuals from which to estimate allele frequencies. We then test our method against empirical data from 179 wild and captive-bred old-field mice, Peromyscus polionotus subgriseus, comprising pedigree-based estimates of f, along with genetic data from 94 AFLP markers and 12 microsatellites. Inbreeding estimates based on both AFLP and microsatellite markers were found to correlate strongly with pedigree-based inbreeding coefficients. Owing to their ease of amplification in any species, AFLP markers may prove to be a valuable new tool for estimating f in natural populations and for examining correlations between heterozygosity and fitness.  相似文献   

7.
Estimating local ancestry in admixed populations   总被引:1,自引:0,他引:1       下载免费PDF全文
Large-scale genotyping of SNPs has shown a great promise in identifying markers that could be linked to diseases. One of the major obstacles involved in performing these studies is that the underlying population substructure could produce spurious associations. Population substructure can be caused by the presence of two distinct subpopulations or a single pool of admixed individuals. In this work, we focus on the latter, which is significantly harder to detect in practice. New advances in this research direction are expected to play a key role in identifying loci that are different among different populations and are still associated with a disease. We evaluated current methods for inference of population substructure in such cases and show that they might be quite inaccurate even in relatively simple scenarios. We therefore introduce a new method, LAMP (Local Ancestry in adMixed Populations), which infers the ancestry of each individual at every single-nucleotide polymorphism (SNP). LAMP computes the ancestry structure for overlapping windows of contiguous SNPs and combines the results with a majority vote. Our empirical results show that LAMP is significantly more accurate and more efficient than existing methods for inferring locus-specific ancestries, enabling it to handle large-scale datasets. We further show that LAMP can be used to estimate the individual admixture of each individual. Our experimental evaluation indicates that this extension yields a considerably more accurate estimate of individual admixture than state-of-the-art methods such as STRUCTURE or EIGENSTRAT, which are frequently used for the correction of population stratification in association studies.  相似文献   

8.
Berry DA  Seltzer JD  Xie C  Wright DL  Smith JS 《Genetics》2002,161(2):813-824
Determination of parentage is fundamental to the study of biology and to applications such as the identification of pedigrees. Limitations to studies of parentage have stemmed from the use of an insufficient number of hypervariable loci and mismatches of alleles that can be caused by mutation or by laboratory error and that can generate false exclusions. Furthermore, most studies of parentage have been limited to comparisons of small numbers of specific parent-progeny triplets thereby precluding large-scale surveys of candidates where there may be no prior knowledge of parentage. We present an algorithm that can determine probability of parentage in circumstances where there is no prior knowledge of pedigree and that is robust in the face of missing data or mistyped data. We present data from 54 maize hybrids and 586 maize inbreds that were profiled using 195 SSR loci including simulations of additional levels of missing and mistyped data to demonstrate the utility and flexibility of this algorithm.  相似文献   

9.
P. G. Lanham 《Genetica》1996,98(2):193-197
Heterozygosity in three cultivars of the blackcurrant (Ribes nigrum L.) was estimated. A selfed population of each cultivar was screened for Random Amplified Polymorphic DNA markers (RAPDs) and heterozygous loci were identified by band segregation in contrast with the non-segregation of homozygous loci. On average, 21% of the loci scored in each cultivar were heterozygous. The implications for mapping studies in Ribes nigrum are discussed.  相似文献   

10.
Li  Juan  Demesyeux  Lynhe  Brym  Maria  Chambers  Alan H. 《Molecular biology reports》2020,47(3):1905-1920

Vanilla planifolia is the primary botanical source of vanilla extract used globally in various foods and beverages. V. planifolia has a global distribution based on a few foundational clones and therefore has limited genetic diversity. Many Vanilla species easily hybridize with V. planifolia and could be a source of valuable genetic traits like increased vanillin content, disease resistance, or early flowering. While breeding Vanilla hybrids may improve plant performance, basic molecular tools for this species are lacking. DNA-based molecular markers are the most efficient method to validate hybrid progeny, detect hybrids in commercial plantings, and identify unknown accessions. This study used publicly available sequence data to develop species-specific, qRT-PCR-based molecular markers for Vanilla. Over 580,000 assembled sequence fragments were filtered for species specificity and twenty-two targets were selected for qRT-PCR screening. Ten targets differentially amplified among V. planifolia, V. pompona, V. phaeantha, and V. palmarum with ΔCT values as high as 17.58 between species. The ten targets were used to validate the parentage of hybrid progeny from controlled crosses with most hybrid progeny showing amplification patterns similar to both parents. The ten targets were also used to screen sixteen Vanilla species for specificity, and supported species assignments for unknown accessions including the detection of putative hybrids. This is the first report using species-specific, qRT-PCR-based molecular markers in Vanilla. These markers are inexpensive, simple to develop, and can rapidly screen large populations. These methods will enable the further development of species-specific molecular markers when creating Vanilla interspecific hybrid populations.

  相似文献   

11.
Estimating polygenic effects using markers of the entire genome   总被引:26,自引:0,他引:26  
Xu S 《Genetics》2003,163(2):789-801
Molecular markers have been used to map quantitative trait loci. However, they are rarely used to evaluate effects of chromosome segments of the entire genome. The original interval-mapping approach and various modified versions of it may have limited use in evaluating the genetic effects of the entire genome because they require evaluation of multiple models and model selection. Here we present a Bayesian regression method to simultaneously estimate genetic effects associated with markers of the entire genome. With the Bayesian method, we were able to handle situations in which the number of effects is even larger than the number of observations. The key to the success is that we allow each marker effect to have its own variance parameter, which in turn has its own prior distribution so that the variance can be estimated from the data. Under this hierarchical model, we were able to handle a large number of markers and most of the markers may have negligible effects. As a result, it is possible to evaluate the distribution of the marker effects. Using data from the North American Barley Genome Mapping Project in double-haploid barley, we found that the distribution of gene effects follows closely an L-shaped Gamma distribution, which is in contrast to the bell-shaped Gamma distribution when the gene effects were estimated from interval mapping. In addition, we show that the Bayesian method serves as an alternative or even better QTL mapping method because it produces clearer signals for QTL. Similar results were found from simulated data sets of F(2) and backcross (BC) families.  相似文献   

12.
13.
The genus Gypsophila contains about 150 annual and perennial flowering plant species native to the temperate regions of Europe and Asia. Nowadays Gypsophila species are present worldwide as garden ornamental plants. Although Gypsophila is one of the most economically important ornamental crops, little is known about its genetic variability and the relationships among the different wild species, cultivars, and commercial hybrids. The aim of our work was to analyze genetic distances among 5 wild species and 13 commercial hybrids of Gypsophila with similar phenotypes but unknown origin. For this purpose, we have used amplified fragment length polymorphism, target region amplification polymorphism, and inter simple sequence repeat whole-genome markers and chloroplast simple sequence repeat (cpSSR), targeting chloroplast DNA. Nuclear markers were found to distinguish all the analyzed samples while cpSSR markers were found to discriminate the different wild species, but could not sufficiently separate the commercial hybrids. This notwithstanding, the data obtained allowed us to cluster the commercial hybrids into different sub-groups and to determine the relationships with the putative species of origin.  相似文献   

14.
Luo L  Xu S 《Heredity》2003,90(6):459-467
In genetic mapping experiments, some molecular markers often show distorted segregation ratios. We hypothesize that these markers are linked to some viability loci that cause the observed segregation ratios to deviate from Mendelian expectations. Although statistical methods for mapping viability loci have been developed for line-crossing experiments, methods for viability mapping in outbred populations have not been developed yet. In this study, we develop a method for mapping viability loci in outbred populations using a full-sib family as an example. We develop a maximum likelihood (ML) method that uses the observed marker genotypes as data and the proportions of the genotypes of the viability locus as parameters. The ML solutions are obtained via the expectation-maximization algorithm. Application and efficiencies of the method are demonstrated and tested using a set of simulated data. We conclude that mapping viability loci can be accomplished using similar statistical techniques used in quantitative trait locus mapping for quantitative traits.  相似文献   

15.
In an earlier paper we proposed, on the basis of mitochondrial control region variation, that the bulk of modern European mitochondrial DNA(mtDNA) diversity had its roots in the European Upper Palaeolithic. Refining the mtDNA phylogeny and enlarging the sample size both within Europe and the Middle East still support this interpretation and indicate three separate phases of colonization: (i) the Early Upper Palaeolithic about 50,000 BP; (ii) the Late Upper Palaeolithic 11,000-14,000 BP; and (iii) the Neolithic from 8500 BP.  相似文献   

16.
Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411~1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source.  相似文献   

17.
Summary Somatic fusion of rice [Oryza sativa L.] cell lines [hygr-philipino 28] and [geneticinr(G418r)-G171] was carried out using electrofusion methodology. Heterokaryons were identified in culture medium supplemented with both hygromycin B and G418. The hybrid character, of some of the putative somatic hybrid plants, was confirmed by Southern blot analysis which indicated the presence of the selectable marker genes [hpt, npt II] brought by the two parents of fusion.  相似文献   

18.
Inference of individual ancestry is useful in various applications, such as admixture mapping and structured-association mapping. Using information-theoretic principles, we introduce a general measure, the informativeness for assignment (I(n)), applicable to any number of potential source populations, for determining the amount of information that multiallelic markers provide about individual ancestry. In a worldwide human microsatellite data set, we identify markers of highest informativeness for inference of regional ancestry and for inference of population ancestry within regions; these markers, which are listed in online-only tables in our article, can be useful both in testing for and in controlling the influence of ancestry on case-control genetic association studies. Markers that are informative in one collection of source populations are generally informative in others. Informativeness of random dinucleotides, the most informative class of microsatellites, is five to eight times that of random single-nucleotide polymorphisms (SNPs), but 2%-12% of SNPs have higher informativeness than the median for dinucleotides. Our results can aid in decisions about the type, quantity, and specific choice of markers for use in studies of ancestry.  相似文献   

19.
We present findings based on a study of Y-chromosome diallelic and microsatellite variation in 181 Icelanders, 233 Scandinavians, and 283 Gaels from Ireland and Scotland. All but one of the Icelandic Y chromosomes belong to haplogroup 1 (41.4%), haplogroup 2 (34.2%), or haplogroup 3 (23.8%). We present phylogenetic networks of Icelandic Y-chromosome variation, using haplotypes constructed from seven diallelic markers and eight microsatellite markers, and we propose two new clades. We also report, for the first time, the phylogenetic context of the microsatellite marker DYS385 in Europe. A comparison of haplotypes based on six diallelic loci and five microsatellite loci indicates that some Icelandic haplogroup-1 chromosomes are likely to have a Gaelic origin, whereas for most Icelandic haplogroup-2 and -3 chromosomes, a Scandinavian origin is probable. The data suggest that 20%-25% of Icelandic founding males had Gaelic ancestry, with the remainder having Norse ancestry. The closer relationship with the Scandinavian Y-chromosome pool is supported by the results of analyses of genetic distances and lineage sharing. These findings contrast with results based on mtDNA data, which indicate closer matrilineal links with populations of the British Isles. This supports the model, put forward by some historians, that the majority of females in the Icelandic founding population had Gaelic ancestry, whereas the majority of males had Scandinavian ancestry.  相似文献   

20.
In plant genetics and breeding, second-generation molecular markers allow detailed characterization of plant genotypes. Unique genotypes at ten simple sequence repeat (SSR) loci were established for 40 maize accessions by means of PCR. For every locus, SSR analysis revealed heterozygotes among simple hybrids, which made it possible to identify the parental forms with a high probability of exclusion of nonparental forms. A system was proposed for registration of maize genotypes in the form of genetic formulas reflecting the allelic state of microsatellite loci, in order to catalog, preserve, and effectively employ the existing maize gene pool in breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号