首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genes that underlie ethnic differences in disease risk can be mapped in affected individuals of mixed descent if the ancestry of the alleles at each marker locus can be assigned to one of the two founding populations. Linkage can be detected by testing for association of the disease with the ancestry of alleles at the marker locus, by conditioning on the admixture (defined as the proportion of genes that have ancestry from the high-risk population) of both parents. With regard to exploiting the effects of admixture, this test is more flexible and powerful than the transmission-disequilibrium test. Under the assumption of a multiplicative model, the statistical power for a given sample size depends only on parental admixture and the risk ratio r between populations that is generated by the locus. The most informative families are those in which mean parental admixture is .2-.7 and in which admixture is similar in both parents. The number of markers required for a genome search depends on the number of generations since admixture and on the information content for ancestry (f) of the markers, defined as a function of allele frequencies in the two founding populations. Simulations using a hidden Markov model suggest that, when admixture has occurred 2-10 generations earlier, a multipoint analysis using 2,000 biallelic markers, with f values of 30%, can extract 70%-90% of the ancestry information for each locus. Sets of such markers could be selected from libraries of single-nucleotide polymorphisms, when these become available.  相似文献   

2.
Hybrid incompatibilities occur when interactions between opposite ancestry alleles at different loci reduce the fitness of hybrids. Most work on incompatibilities has focused on those that are “intrinsic,” meaning they affect viability and sterility in the laboratory. Theory predicts that ecological selection can also underlie hybrid incompatibilities, but tests of this hypothesis using sequence data are scarce. In this article, we compiled genetic data for F2 hybrid crosses between divergent populations of threespine stickleback fish (Gasterosteus aculeatus L.) that were born and raised in either the field (seminatural experimental ponds) or the laboratory (aquaria). Because selection against incompatibilities results in elevated ancestry heterozygosity, we tested the prediction that ancestry heterozygosity will be higher in pond-raised fish compared to those raised in aquaria. We found that ancestry heterozygosity was elevated by approximately 3% in crosses raised in ponds compared to those raised in aquaria. Additional analyses support a phenotypic basis for incompatibility and suggest that environment-specific single-locus heterozygote advantage is not the cause of selection on ancestry heterozygosity. Our study provides evidence that, in stickleback, a coarse—albeit indirect—signal of environment-dependent hybrid incompatibility is reliably detectable and suggests that extrinsic incompatibilities can evolve before intrinsic incompatibilities.

This study shows that hybrid incompatibilities between two independent pairs of hybridizing stickleback populations only appear under relevant ecological circumstances, implying that incompatibilities evolve before they can be detected in laboratory studies of speciation.  相似文献   

3.
Identifying the ancestry of chromosomal segments of distinct ancestry has a wide range of applications from disease mapping to learning about history. Most methods require the use of unlinked markers; but, using all markers from genome-wide scanning arrays, it should in principle be possible to infer the ancestry of even very small segments with exquisite accuracy. We describe a method, HAPMIX, which employs an explicit population genetic model to perform such local ancestry inference based on fine-scale variation data. We show that HAPMIX outperforms other methods, and we explore its utility for inferring ancestry, learning about ancestral populations, and inferring dates of admixture. We validate the method empirically by applying it to populations that have experienced recent and ancient admixture: 935 African Americans from the United States and 29 Mozabites from North Africa. HAPMIX will be of particular utility for mapping disease genes in recently admixed populations, as its accurate estimates of local ancestry permit admixture and case-control association signals to be combined, enabling more powerful tests of association than with either signal alone.  相似文献   

4.
Sohn KA  Ghahramani Z  Xing EP 《Genetics》2012,191(4):1295-1308
We present a new haplotype-based approach for inferring local genetic ancestry of individuals in an admixed population. Most existing approaches for local ancestry estimation ignore the latent genetic relatedness between ancestral populations and treat them as independent. In this article, we exploit such information by building an inheritance model that describes both the ancestral populations and the admixed population jointly in a unified framework. Based on an assumption that the common hypothetical founder haplotypes give rise to both the ancestral and the admixed population haplotypes, we employ an infinite hidden Markov model to characterize each ancestral population and further extend it to generate the admixed population. Through an effective utilization of the population structural information under a principled nonparametric Bayesian framework, the resulting model is significantly less sensitive to the choice and the amount of training data for ancestral populations than state-of-the-art algorithms. We also improve the robustness under deviation from common modeling assumptions by incorporating population-specific scale parameters that allow variable recombination rates in different populations. Our method is applicable to an admixed population from an arbitrary number of ancestral populations and also performs competitively in terms of spurious ancestry proportions under a general multiway admixture assumption. We validate the proposed method by simulation under various admixing scenarios and present empirical analysis results from a worldwide-distributed dataset from the Human Genome Diversity Project.  相似文献   

5.
Population stratification may confound the results of genetic association studies among unrelated individuals from admixed populations. Several methods have been proposed to estimate the ancestral information in admixed populations and used to adjust the population stratification in genetic association tests. We evaluate the performances of three different methods: maximum likelihood estimation, ADMIXMAP and Structure through various simulated data sets and real data from Latino subjects participating in a genetic study of asthma. All three methods provide similar information on the accuracy of ancestral estimates and control type I error rate at an approximately similar rate. The most important factor in determining accuracy of the ancestry estimate and in minimizing type I error rate is the number of markers used to estimate ancestry. We demonstrate that approximately 100 ancestry informative markers (AIMs) are required to obtain estimates of ancestry that correlate with correlation coefficients more than 0.9 with the true individual ancestral proportions. In addition, after accounting for the ancestry information in association tests, the excess of type I error rate is controlled at the 5% level when 100 markers are used to estimate ancestry. However, since the effect of admixture on the type I error rate worsens with sample size, the accuracy of ancestry estimates also needs to increase to make the appropriate correction. Using data from the Latino subjects, we also apply these methods to an association study between body mass index and 44 AIMs. These simulations are meant to provide some practical guidelines for investigators conducting association studies in admixed populations.  相似文献   

6.
When a lineage originates from hybridization genomic blocks of contiguous ancestry from different ancestors are fragmented through genetic recombination. The resulting blocks are delineated by so called junctions, which accumulate with every generation that passes. Modeling the accumulation of ancestry block junctions can elucidate processes and timeframes of genomic admixture. Previous models have not addressed ancestry block dynamics for chromosomes that consist of a finite number of recombination sites. However, genomic data typically consist of informative markers that are interspersed with fragments for which no ancestry information is available. Hence, repeated recombination events may occur between markers, effectively removing existing junctions. Here, we present an analytical treatment of the dynamics of the mean number of junctions over time, taking into account the number of recombination sites per chromosome, population size, genetic map length, and the frequency of the ancestral species in the founding hybrid swarm. We describe the expected number of junctions using equidistant molecular markers and estimate the number of junctions using random markers. This extended theory of junctions thus reflects properties of empirical data and can serve to study the genomic patterns following admixture.  相似文献   

7.
The Uyghur (UIG) population, settled in Xinjiang, China, is a population presenting a typical admixture of Eastern and Western anthropometric traits. We dissected its genomic structure at population level, individual level, and chromosome level by using 20,177 SNPs spanning nearly the entire chromosome 21. Our results showed that UIG was formed by two-way admixture, with 60% European ancestry and 40% East Asian ancestry. Overall linkage disequilibrium (LD) in UIG was similar to that in its parental populations represented in East Asia and Europe with regard to common alleles, and UIG manifested elevation of LD only within 500 kb and at a level of 0.1 相似文献   

8.
One of the main findings derived from the analysis of the Neandertal genome was the evidence for admixture between Neandertals and non-African modern humans. An alternative scenario is that the ancestral population of non-Africans was closer to Neandertals than to Africans because of ancient population substructure. Thus, the study of North African populations is crucial for testing both hypotheses. We analyzed a total of 780,000 SNPs in 125 individuals representing seven different North African locations and searched for their ancestral/derived state in comparison to different human populations and Neandertals. We found that North African populations have a significant excess of derived alleles shared with Neandertals, when compared to sub-Saharan Africans. This excess is similar to that found in non-African humans, a fact that can be interpreted as a sign of Neandertal admixture. Furthermore, the Neandertal''s genetic signal is higher in populations with a local, pre-Neolithic North African ancestry. Therefore, the detected ancient admixture is not due to recent Near Eastern or European migrations. Sub-Saharan populations are the only ones not affected by the admixture event with Neandertals.  相似文献   

9.
The genome of recently admixed individuals or hybrids has characteristic genetic patterns that can be used to learn about their recent admixture history. One of these are patterns of interancestry heterozygosity, which can be inferred from SNP data from either called genotypes or genotype likelihoods, without the need for information on genomic location. This makes them applicable to a wide range of data that are often used in evolutionary and conservation genomic studies, such as low-depth sequencing mapped to scaffolds and reduced representation sequencing. Here we implement maximum likelihood estimation of interancestry heterozygosity patterns using two complementary models. We furthermore develop apoh (Admixture Pedigrees of Hybrids), a software that uses estimates of paired ancestry proportions to detect recently admixed individuals or hybrids, and to suggest possible admixture pedigrees. It furthermore calculates several hybrid indices that make it easier to identify and rank possible admixture pedigrees that could give rise to the estimated patterns. We implemented apoh both as a command line tool and as a Graphical User Interface that allows the user to automatically and interactively explore, rank and visualize compatible recent admixture pedigrees, and calculate the different summary indices. We validate the performance of the method using admixed family trios from the 1000 Genomes Project. In addition, we show its applicability on identifying recent hybrids from RAD-seq data of Grant's gazelle (Nanger granti and Nanger petersii) and whole genome low-depth data of waterbuck (Kobus ellipsiprymnus) which shows complex admixture of up to four populations.  相似文献   

10.
Methods for high-density admixture mapping of disease genes   总被引:26,自引:0,他引:26       下载免费PDF全文
Admixture mapping (also known as "mapping by admixture linkage disequilibrium," or MALD) has been proposed as an efficient approach to localizing disease-causing variants that differ in frequency (because of either drift or selection) between two historically separated populations. Near a disease gene, patient populations descended from the recent mixing of two or more ethnic groups should have an increased probability of inheriting the alleles derived from the ethnic group that carries more disease-susceptibility alleles. The central attraction of admixture mapping is that, since gene flow has occurred recently in modern populations (e.g., in African and Hispanic Americans in the past 20 generations), it is expected that admixture-generated linkage disequilibrium should extend for many centimorgans. High-resolution marker sets are now becoming available to test this approach, but progress will require (a). computational methods to infer ancestral origin at each point in the genome and (b). empirical characterization of the general properties of linkage disequilibrium due to admixture. Here we describe statistical methods to estimate the ancestral origin of a locus on the basis of the composite genotypes of linked markers, and we show that this approach accurately estimates states of ancestral origin along the genome. We apply this approach to show that strong admixture linkage disequilibrium extends, on average, for 17 cM in African Americans. Finally, we present power calculations under varying models of disease risk, sample size, and proportions of ancestry. Studying approximately 2500 markers in approximately 2500 patients should provide power to detect many regions contributing to common disease. A particularly important result is that the power of an admixture mapping study to detect a locus will be nearly the same for a wide range of mixture scenarios: the mixture proportion should be 10%-90% from both ancestral populations.  相似文献   

11.
Admixture mapping is a promising new tool for discovering genes that contribute to complex traits. This mapping approach uses samples from recently admixed populations to detect susceptibility loci at which the risk alleles have different frequencies in the original contributing populations. Although the idea for admixture mapping has been around for more than a decade, the genomic tools are only now becoming available to make this a feasible and attractive option for complex-trait mapping. In this article, we describe new statistical methods for analyzing multipoint data from admixture-mapping studies to detect "ancestry association." The new test statistics do not assume a particular disease model; instead, they are based simply on the extent to which the sample's ancestry proportions at a locus deviate from the genome average. Our power calculations show that, for loci at which the underlying risk-allele frequencies are substantially different in the ancestral populations, the power of admixture mapping can be comparable to that of association mapping but with a far smaller number of markers. We also show that, although "ancestry informative markers" (AIMs) are superior to random single-nucleotide polymorphisms (SNPs), random SNPs can perform quite well when AIMs are not available. Hence, researchers who study admixed populations in which AIMs are not available can perform admixture mapping with the use of modestly higher densities of random markers. Software to perform the gene-mapping calculations, "MALDsoft," is freely available on the Pritchard Lab Web site.  相似文献   

12.
Crossbreeding with free-ranging domestic cats is supposed to threaten the genetic integrity of wildcat populations in Europe, although the diagnostic markers to identify "pure" or "admixed" wildcats have never been clearly defined. Here we use mitochondrial (mt) DNA sequences and allelic variation at 12 microsatellite loci to genotype 128 wild and domestic cats sampled in Italy which were preclassified into three separate groups: European wildcats (Felis silvestris silvestris), Sardinian wildcats (Felis silvestris libyca), and domestic cats (Felis silvestris catus), according to their coat color patterns, collection localities, and other phenotypical traits, independently of any genetic information. For comparison, we included some captive-reared hybrids of European wild and domestic cats. Genetic variability was significantly partitioned among the three groups (mtDNA estimate of F(ST) = 0.36; microsatellite estimate of R(ST) = 0.30; P < 0.001), suggesting that morphological diversity reflects the existence of distinct gene pools. Multivariate ordination of individual genotypes and clustering of interindividual genetic distances also showed evidence of distinct cat groups, partially congruent with the morphological classification. Cluster analysis, however, did not enable hybrid cats to be identified from genetic information alone, nor were all individuals assigned to their populations. In contrast, a Bayesian admixture analysis simultaneously assigned the European wildcats, the Sardinian wildcats, and the domestic cats to different clusters, independent of any prior information, and pointed out the admixed gene composition of the hybrids, which were assigned to more than one cluster. Only one putative Sardinian wildcat was assigned to the domestic cat cluster, and one presumed European wildcat showed mixed (hybrid) ancestry in the domestic cat gene pool. Mitochondrial DNA sequences indicated that three additional presumed European wildcats might have hybrid ancestry. These four cats were sampled from the same area in the northernmost edge of the European wildcat distribution in the Italian Apennines. Admixture analyses suggest that wild and domestic cats in Italy are distinct, reproductively isolated gene pools and that introgression of domestic alleles into the wild-living population is very limited and geographically localized.  相似文献   

13.
Quercus petraea and Quercus robur are two closely related oak species, considered to hybridize. Genetic markers, however, indicate that despite sharing most alleles, the two species remain separate genetic units. Analysis of 20 microsatellite loci in multiple populations from both species suggested a genome-wide differentiation. Thus, the allele sharing between both species could be explained either by low rates of gene flow or shared ancestral variation. We performed further analyses of population differentiation in a biogeographical setting and an admixture analysis in mixed oak stands to distinguish between both hypotheses. Based on our results we propose that the low genetic differentiation among these species results from shared ancestry rather than high rates of gene flow.  相似文献   

14.
Hybridization between closely related species, whether naturally occurring or laboratory generated, is a useful tool for mapping the genetic basis of the phenotypic traits that distinguish species. The development of next‐generation sequencing techniques has greatly improved our ability to assign ancestry to hybrid genomes. One such next‐generation sequencing technique, multiplexed shotgun genotyping (or MSG), can be a powerful tool for genotyping hybrids. However, it is difficult a priori to predict the accuracy of MSG in natural hybrids because accuracy depends on ancestry tract length and number of ancestry informative markers. Here, we present a simulator, ‘simMSG’, that will allow researchers to design MSG experiments and show that in many cases MSG can accurately assign ancestry to hundreds of thousands of sites in the genomes of natural hybrids. The simMSG tool can be used to design experiments for diverse applications including QTL mapping, genotyping introgressed lines or admixture mapping.  相似文献   

15.
BACKGROUND/AIMS: The Tobago Afro-Caribbean population is a valuable resource for studying the genetics of diseases that show significant differences in prevalence between populations of African descent and populations of other ancestries. Empirical confirmation of low European and Native American admixture may help in clarifying the ethnic variation in risk for such diseases. We hypothesize that the degree of European and Native American admixture in the Tobago population is low. METHODS: Admixture was estimated in a random sample of 220 men, from a population-based prostate cancer screening survey of 3,082 Tobago males, aged 40 to 79 years. We used a set of six autosomal markers with large allele frequency differences between the major ethnic populations involved in the admixture process, Europeans, Native Americans and West Africans. RESULTS: The ancestral proportions of Tobago population are estimated as 94.0+/-1.2% African, 4.6+/-3.4% European and 1.4+/-3.6% Native American. CONCLUSIONS: We conclude that Tobago Afro-Caribbean men are predominantly of West African ancestry, with minimal European and Native American admixture. The Tobago population, thus, may carry a higher burden of high-risk alleles of African origin for certain diseases than the more admixed African-American population. Conversely, this population may benefit from a higher prevalence of protective alleles of African origin.  相似文献   

16.
Admixture occurs when individuals from parental populations that have been isolated for hundreds of generations form a new hybrid population. Currently, interest in measuring biogeographic ancestry has spread from anthropology to forensic sciences, direct-to-consumers personal genomics, and civil rights issues of minorities, and it is critical for genetic epidemiology studies of admixed populations. Markers with highly differentiated frequencies among human populations are informative of ancestry and are called ancestry informative markers (AIMs). For tri-hybrid Latin American populations, ancestry information is required for Africans, Europeans and Native Americans. We developed two multiplex panels of AIMs (for 14 SNPs) to be genotyped by two mini-sequencing reactions, suitable for investigators of medium-small laboratories to estimate admixture of Latin American populations. We tested the performance of these AIMs by comparing results obtained with our 14 AIMs with those obtained using 108 AIMs genotyped in the same individuals, for which DNA samples is available for other investigators. We emphasize that this type of comparison should be made when new admixture/population structure panels are developed. At the population level, our 14 AIMs were useful to estimate European admixture, though they overestimated African admixture and underestimated Native American admixture. Combined with more AIMs, our panel could be used to infer individual admixture. We used our panel to infer the pattern of admixture in two urban populations (Montes Claros and Manhua?u) of the State of Minas Gerais (southeastern Brazil), obtaining a snapshot of their genetic structure in the context of their demographic history.  相似文献   

17.
Markers with large differences in allele frequencies between ethnicities provide ancestry information that can be applied to genetic studies. We identified over 100 biallelic ancestry informative markers (AIMs) with large allele frequency differences between European Americans (EA) and Pima Amerindians from laboratory and database screens. For 35 of these markers, Mayan, Yavapai and Quechuan Amerindians were genotyped and compared with EA and Pima allele frequencies. Markers with large allele frequency differences between EA and one Amerindian tribe showed only small differences between the Amerindian tribes. Examination of structure in individuals demonstrated a clear separation of subjects of European from those of Amerindian ancestry, and similarity between individuals from disparate Amerindian populations. The AIMs demonstrated the variation in ancestral composition of individual Mexican Americans, providing evidence of applicability in admixture mapping and in controlling for structure in association tests. In addition, a high percentage of single-nucleotide polymorphisms (SNPs) selected on the basis of large frequency differences between EA and Asian populations had large allele frequency differences between EA and Amerindians, suggesting an efficient method for greatly expanding AIMs for use in admixture mapping/structure analysis in Mexican Americans. Together, these data provide additional support for the practical application of admixture mapping in the Mexican American population.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

18.
Drosophila melanogaster originated in Africa and colonized the rest of the world only recently (approximately 10,000 to 15,000 years ago). Using 151 microsatellite loci, we investigated patterns of gene flow between African D. melanogaster populations representing presumptive ancestral variation and recently colonized European populations. Although we detected almost no evidence for alleles of non-African ancestry in a rural D. melanogaster population from Zimbabwe, an urban population from Zimbabwe showed evidence for admixture. Interestingly, the degree of admixture differed among chromosomes. X chromosomes of both rural and urban populations showed almost no non-African ancestry, but the third chromosome in the urban population showed up to 70% of non-African alleles. When chromosomes were broken into contingent microsatellite blocks, even higher estimates of admixture and significant heterogeneity in admixture was observed among these blocks. The discrepancy between the X chromosome and the third chromosome is not consistent with a neutral admixture hypothesis. The higher number of European alleles on the third chromosome could be due to stronger selection against foreign alleles on the X chromosome or to more introgression of (beneficial) alleles on the third chromosome.  相似文献   

19.
One enduring question in evolutionary biology is the extent of archaic admixture in the genomes of present-day populations. In this paper, we present a test for ancient admixture that exploits the asymmetry in the frequencies of the two nonconcordant gene trees in a three-population tree. This test was first applied to detect interbreeding between Neandertals and modern humans. We derive the analytic expectation of a test statistic, called the D statistic, which is sensitive to asymmetry under alternative demographic scenarios. We show that the D statistic is insensitive to some demographic assumptions such as ancestral population sizes and requires only the assumption that the ancestral populations were randomly mating. An important aspect of D statistics is that they can be used to detect archaic admixture even when no archaic sample is available. We explore the effect of sequencing error on the false-positive rate of the test for admixture, and we show how to estimate the proportion of archaic ancestry in the genomes of present-day populations. We also investigate a model of subdivision in ancestral populations that can result in D statistics that indicate recent admixture.  相似文献   

20.
Recently admixed populations offer unique opportunities for studying human history and for elucidating the genetic basis of complex traits that differ in prevalence between human populations. Historical records, classical protein markers, and preliminary genetic data indicate that the Cape Verde islands in West Africa are highly admixed and primarily descended from European males and African females. However, little is known about the variation in admixture levels, admixture dynamics and genetic diversity across the islands, or about the potential of Cape Verde for admixture mapping studies. We have performed a detailed analysis of phenotypic and genetic variation in Cape Verde based on objective skin color measurements, socio-economic status (SES) evaluations and data for 50 autosomal, 34 X-chromosome, and 21 non-recombinant Y-chromosome (NRY) markers in 845 individuals from six islands of the archipelago. We find extensive genetic admixture between European and African ancestral populations (mean West African ancestry = 0.57, sd = 0.08), with individual African ancestry proportions varying considerably among the islands. African ancestry proportions calculated with X and Y-chromosome markers confirm that the pattern of admixture has been sex-biased. The high-resolution NRY-STRs reveal additional patterns of variation among the islands that are most consistent with differentiation after admixture. The differences in the autosomal admixture proportions are clearly evident in the skin color distribution across the islands (Pearson r = 0.54, P-value<2e–16). Despite this strong correlation, there are significant interactions between SES and skin color that are independent of the relationship between skin color and genetic ancestry. The observed distributions of admixture, genetic variation and skin color and the relationship of skin color with SES relate to historical and social events taking place during the settlement history of Cape Verde, and have implications for the design of association studies using this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号