首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Photodynamic therapy is selective destruction of cells stained with a photosensitizer upon irradiation with light at a specific wavelength in the presence of oxygen. Cell death upon photodynamic treatment is known to occur mainly due to free radical production and subsequent development of oxidative stress. During photodynamic therapy of brain tumors, healthy cells are also damaged; considering this, it is important to investigate the effect of the treatment on normal neurons and glia. We employed live-cell imaging technique to investigate the cellular mechanism of photodynamic action of radachlorin (200 nM) on neurons and astrocytes in primary rat cell culture. We found that the photodynamic effect of radachlorin increases production of reactive oxygen species measured by dihydroethidium and significantly decrease mitochondrial membrane potential. Mitochondrial depolarization was independent of opening of mitochondrial permeability transition pore and was insensitive to blocker of this pore cyclosporine A. However, irradiation of cells with radachlorin dramatically decreased NADH autofluorescence and also reduced mitochondrial NADH pool suggesting inhibition of mitochondrial respiration by limitation of substrate. This effect could be prevented by inhibition of poly (ADP-ribose) polymerase (PARP) with DPQ. Thus, irradiation of neurons and astrocytes in the presence of radachlorin leads to activation of PARP and decrease in NADH that leads to mitochondrial dysfunction.  相似文献   

4.
It has been recently recognized that the increased oxidative stress (ROS overproduction) in obese condition is a key contributor to the pathogenesis of obesity-associated metabolic diseases. Apelin is an adipocytokine secreted by adipocytes, and known for its anti-obesity and anti-diabetic properties. In obesity, both oxidative stress and plasma level of apelin are increased. However, the regulatory roles of apelin on oxidative stress in adipocytes remain unknown. In the present study, we provide evidence that apelin, through its interaction with apelin receptor (APJ), suppresses production and release of reactive oxygen species (ROS) in adipocytes. This is further supported by the observations that apelin promotes the expression of anti-oxidant enzymes via MAPK kinase/ERK and AMPK pathways, and suppresses the expression of pro-oxidant enzyme via AMPK pathway. We further demonstrate that apelin is able to relieve oxidative stress-induced dysregulations of the expression of anti- and pro-oxidant enzymes, mitochondrial biogenesis and function, as well as release of pro- and anti-inflammatory adipocytokines. This study, for the first time, reveals the antioxidant properties of apelin in adipocytes, and suggests its potential as a novel therapeutic target for metabolic diseases.  相似文献   

5.
6.
为了探讨植物提取物槲皮素对负重游泳小鼠的能量代谢和氧化应激的影响,本研究将45只SPF级雄性昆明小鼠随机分为正常对照组、游泳组和槲皮素组,每组15只。槲皮素组小鼠喂养2 g/kg的槲皮素饲料,其他组小鼠喂养标准饲料,共喂养14 d。然后将游泳组和槲皮素组小鼠按照体重的3%进行负重游泳1 h,测定各组小鼠的血糖、乳酸、尿素氮、游离脂肪酸、琥珀酸脱氢酶、三磷酸腺苷、丙二醛、谷胱甘肽过氧化物酶和总抗氧化活性。结果显示,负重游泳后,槲皮素组血清乳酸和尿素氮水平显著低于游泳组,并且槲皮素组游离脂肪酸水平显著高于游泳组。负重游泳后,游泳组小鼠的肝脏和肌肉组织中的琥珀酸脱氢酶含量均显著降低,槲皮素组小鼠游泳后未见明显降低。负重游泳后,游泳组小鼠肌肉组织中的ATP酶活性显著降低,槲皮素组小鼠游泳后未见明显降低。负重游泳后,槲皮素组的丙二醛含量显著低于游泳组。游泳组和槲皮素组小鼠负重游泳后的谷胱甘肽过氧化物酶含量均显著降低,槲皮素组小鼠的谷胱甘肽过氧化物酶含量未见明显降低。游泳组小鼠血清总抗氧化活性显著低于对照组,而槲皮素组与对照组无显著差异。本研究初步表明,槲皮素可调节负重游泳小鼠的能量代谢来起到抗疲劳作用,主要机制与增加脂肪动员、抑制蛋白质分解和加强三羧酸循环有关。另外,槲皮素可通过抑制脂质过氧化、清除超氧阴离子自由基来防止运动过程中的氧化应激损伤。  相似文献   

7.
Inflammation and oxidative and dicarbonyl stress play important roles in the pathogenesis of type 2 diabetes. Metformin is the first-line drug of choice for the treatment of type 2 diabetes because it effectively suppresses gluconeogenesis in the liver. However, its “pleiotropic” effects remain controversial. In the current study, we tested the effects of metformin on inflammation, oxidative and dicarbonyl stress in an animal model of inflammation and metabolic syndrome, using spontaneously hypertensive rats that transgenically express human C-reactive protein (SHR-CRP). We treated 8-month-old male transgenic SHR-CRP rats with metformin (5 mg/kg/day) mixed as part of a standard diet for 4 weeks. A corresponding untreated control group of male transgenic SHR-CRP rats were fed a standard diet without metformin. In a similar fashion, we studied a group of nontransgenic SHR treated with metformin and an untreated group of nontransgenic SHR controls. In each group, we studied 6 animals. Parameters of glucose and lipid metabolism and oxidative and dicarbonyl stress were measured using standard methods. Gene expression profiles were determined using Affymetrix GeneChip Arrays. Statistical significance was evaluated by two-way ANOVA. In the SHR-CRP transgenic strain, we found that metformin treatment decreased circulating levels of inflammatory response marker IL-6, TNFα and MCP-1 while levels of human CRP remained unchanged. Metformin significantly reduced oxidative stress (levels of conjugated dienes and TBARS) and dicarbonyl stress (levels of methylglyoxal) in left ventricles, but not in kidneys. No significant effects of metformin on oxidative and dicarbonyl stress were observed in SHR controls. In addition, metformin treatment reduced adipose tissue lipolysis associated with human CRP. Possible molecular mechanisms of metformin action–studied by gene expression profiling in the liver–revealed deregulated genes from inflammatory and insulin signaling, AMP-activated protein kinase (AMPK) signaling and gluconeogenesis pathways. It can be concluded that in the presence of high levels of human CRP, metformin protects against inflammation and oxidative and dicarbonyl stress in the heart, but not in the kidney. Accordingly, these cardioprotective effects of metformin might be especially effective in diabetic patients with high levels of CRP.  相似文献   

8.
The aim of this study was to investigate whether hATMSCs protect against cyclosporine (CsA)-induced renal injury. CsA (7.5 mg/kg) and hATMSCs (3×106/5 mL) were administered alone and together to rats for 4 weeks. The effect of hATMSCs on CsA-induced renal injury was evaluated by assessing renal function, interstitial fibrosis, infiltration of inflammatory cells, and apoptotic cell death. Four weeks of CsA-treatment produced typical chronic CsA-nephropathy. Combined treatment with CsA and hATMSCs did not prevent these effects and showed a trend toward further renal deterioration. To evaluate why hATMSCs aggravated CsA-induced renal injury, we measured oxidative stress, a major mechanism of CsA-induced renal injury. Both urine and serum 8-hydroxydeoxyguanosine(8-OHdG) levels were higher in the CsA+hATMSCs group than in the CsA group (P<0.05). An in vitro study showed similar results. Although the rate of apoptosis did not differ significantly between HK-2 cells cultured in hATMSCs-conditioned medium and those cultured in DMEM, addition of CsA resulted in greater apoptosis in HK-2 cells cultured in hATMSCs-conditioned medium. Addition of CsA increased oxidative stress in the hATMSCs-conditioned medium. The results of our study suggest that treatment with hATMSCs may aggravate CsA-induced renal injury because hATMSCs cause oxidative stress in the presence of CsA.  相似文献   

9.
Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3±0.4%) were observed compared to the untreated population (20.5±0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro.  相似文献   

10.
The oxidation of l-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different organisms. To explore this potential role and the mechanism, we characterized the oxidative stress resistance of wild-type and putA mutant strains of Escherichia coli. Initial stress assays revealed that the putA mutant strain was significantly more sensitive to oxidative stress than the parental wild-type strain. Expression of PutA in the putA mutant strain restored oxidative stress resistance, confirming that depletion of PutA was responsible for the oxidative stress phenotype. Treatment of wild-type cells with proline significantly increased hydroperoxidase I (encoded by katG) expression and activity. Furthermore, the ΔkatG strain failed to respond to proline, indicating a critical role for hydroperoxidase I in the mechanism of proline protection. The global regulator OxyR activates the expression of katG along with several other genes involved in oxidative stress defense. In addition to katG, proline increased the expression of grxA (glutaredoxin 1) and trxC (thioredoxin 2) of the OxyR regulon, implicating OxyR in proline protection. Proline oxidative metabolism was shown to generate hydrogen peroxide, indicating that proline increases oxidative stress tolerance in E. coli via a preadaptive effect involving endogenous hydrogen peroxide production and enhanced catalase-peroxidase activity.  相似文献   

11.
The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.  相似文献   

12.
Agents which induce heat shock protein synthesis in cultured monolayers of Hela cells such as hyperthermia, ethanol and sodium arsenite can also cause increases in the levels of lipid peroxidation as determined by the formation of TBA-products. The heat induced increases may be diminished by addition to the medium of mannitol or EGTA. These compounds are known to depress heat shock protein synthesis.

Following hyperthermia there is also a decrease in protein synthesis. In vitro studies indicate possible damage to ribosomes, and since the heat induced loss of protein synthetic capacity can be increased by superoxide dismutase inhibitors, and prevented by mannitol, such effects may be linked to the increases observed in lipid peroxidation. It is suggested that a connection exists between lipid peroxidation and heat shock protein gene activation.  相似文献   

13.
《Free radical research》2013,47(1-5):129-139
Agents which induce heat shock protein synthesis in cultured monolayers of Hela cells such as hyperthermia, ethanol and sodium arsenite can also cause increases in the levels of lipid peroxidation as determined by the formation of TBA-products. The heat induced increases may be diminished by addition to the medium of mannitol or EGTA. These compounds are known to depress heat shock protein synthesis.

Following hyperthermia there is also a decrease in protein synthesis. In vitro studies indicate possible damage to ribosomes, and since the heat induced loss of protein synthetic capacity can be increased by superoxide dismutase inhibitors, and prevented by mannitol, such effects may be linked to the increases observed in lipid peroxidation. It is suggested that a connection exists between lipid peroxidation and heat shock protein gene activation.  相似文献   

14.
Resveratrol (RSV), polyphenol from grape, was studied to evaluate its effects on calorimetric parameters, energy metabolism, and antioxidants in the myocardium of diabetic rats. The animals were randomly divided into four groups (n = 8): C (control group): normal rats; C-RSV: normal rats receiving RSV; DM: diabetic rats; and DM-RSV: diabetics rats receiving RSV. Type 1 diabetes mellitus was induced with administration of streptozotocin (STZ; 60 mg−1 body weight, single dose, i.p.). After 48 hours of STZ administration, the animals received RSV (1.0 mg/kg/day) for gavage for 30 days. Food, water, and energy intake were higher in the DM group, while administration of RSV caused decreases (p<0.05) in these parameters. The glycemia decreased and higher final body weight increased in DM-RSV when compared with the DM group. The diabetic rats showed higher serum-free fatty acid, which was normalized with RSV. Oxygen consumption (VO2) and carbon dioxide production (VCO2) decreased (p<0.05) in the DM group. This was accompanied by reductions in RQ. The C-RSV group showed higher VO2 and VCO2 values. Pyruvate dehydrogenase activity was lower in the DM group and normalizes with RSV. The DM group exhibited higher myocardial β-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase activity, and RSV decreased the activity of these enzymes. The DM group had higher cardiac lactate dehydrogenase compared to the DM-RSV group. Myocardial protein carbonyl was increased in the DM group. RSV increased reduced glutathione in the cardiac tissue of diabetic animals. The glutathione reductase activity was higher in the DM-RSV group compared to the DM group. In conclusion, diabetes is accompanied by cardiac energy metabolism dysfunction and change in the biomarkers of oxidative stress. The cardioprotective effect may be mediated through RVS''s ability to normalize free fatty acid oxidation, enhance utilization glucose, and control the biomarkers'' level of oxidative stress under diabetic conditions.  相似文献   

15.
为了探讨铁代谢在妊娠期糖尿病(GDM)发病中的作用,对GDM患者体内铁负荷状态、氧化应激水平及抗氧化状态进行分析研究.在912例孕24~28周产前检查的孕妇中,按血糖筛查和糖耐量试验筛选出GDM孕妇32例为实验组,随机选择糖耐量正常孕妇26例作为对照组,分别测定两组孕妇的血红蛋白(Hb)等指标,以评价机体铁代谢状况;测...  相似文献   

16.
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT), is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.  相似文献   

17.
The specific activity of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was found to increase in the ovaries of pregnant and pseudopregnant rabbits. The mean specific activity of cytosolic ovarian PGDH in 14- to 28-day pregnant rabbits was 24.3 +/- 8.1 nmol NADH formed/min/mg protein (n = 16) using PGE1 as substrate whereas in nonpregnant rabbits the specific activity was 1.5 +/- 0.8 nmol NADH formed/min/mg protein (n = 8). The reaction was dependent on NAD+; NADP+ did not support the reaction. In grouping the PGDH activities from pregnant rabbits into second (14-18 days) and third (2-28 days) trimester periods, no significant difference between values was found (26.1 +/- 8.9 vs 23.4 +/- 8.1 nmol NADH formed/min/mg protein, respectively). Western blot analysis of the ovarian cytosol using an antibody which was made to the purified lung PGDH of pregnant rabbits recognized an ovarian protein of identical molecular mass (30 kDa). Ovarian PGDH activities were also examined in rabbits treated with pregnant mare's serum gonadotrophin (PMSG) and human chorionic gonadotrophin (hCG) to induce a state of superovulatory/pseudopregnancy and only on day 11 following hCG treatment was an increase in PGDH specific activity observed. On day 11, the specific activity was 14.8 +/- 4.3 nmol NADH formed/min/mg protein whereas values on days 10 and 12 were only 1.1 +/- 1.1 and 1.0 +/- 0.8, respectively. PGDH activities on days 3, 7 and 16 were also low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
High blood glucose concentration in diabetes induces free radical production and, thus, causes oxidative stress. Damage of cellular structures by free radicals play an important role in development of diabetic complications. In this study, we evaluated effects of sodium tungstate on enzymatic and nonenzymatic markers of oxidative stress in brain of streptozotocin (STZ)-induced diabetic rats. Rats were divided into four groups (ten rats in each group): untreated control, sodium tungstate-treated control, untreated diabetic, and sodium tungstate-treated diabetic. Diabetes was induced with an intraperitoneal STZ injection (65 mg/kg body weight), and sodium tungstate with concentration of 2 g/L was added to drinking water of treated animals for 4 weeks. Diabetes caused a significant increase in the brain thiobarbituric acid reactive substances (P < 0.01) and protein carbonyl levels (P < 0.01) and a decrease in ferric reducing antioxidant power (P < 0.01). Moreover, diabetic rats presented a reduction in brain glucose-6-phosphate dehydrogenase (21%), superoxide dismutase (41%), glutathione peroxidase (19%), and glutathione reductase (36%) activities. Sodium tungstate reduced the hyperglycemia and restored the diabetes-induced changes in all mentioned markers of oxidative stress. However, catalase activity was not significantly affected by diabetes (P = 0.4), while sodium tungstate caused a significant increase in enzyme activity of treated animals (P < 0.05). Data of present study indicated that sodium tungstate can ameliorate brain oxidative stress in STZ-induced diabetic rats, probably by reducing of the high glucose-induced oxidative stress and/or increasing of the antioxidant defense mechanisms.  相似文献   

20.
Selenocysteine is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the selenocysteine insertion sequence element located in the 3′ UTR of selenoprotein mRNAs, selenium bioavailability, and, possibly, exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical up-regulation of selenoproteins, protected HEK293 cells from reactive oxygen species formation. Furthermore, in response to oxidative stress, we identified a selective up-regulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK, and Sps2). Interestingly, the response was more efficient when selenium was limiting. Although a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by up-regulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, selenocysteine-specific elongation factor, and L30 recoding factors from the cytoplasm to the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号