首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations in the DNA/RNA binding proteins TDP-43 and FUS are associated with Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Intracellular accumulations of wild type TDP-43 and FUS are observed in a growing number of late-onset diseases suggesting that TDP-43 and FUS proteinopathies may contribute to multiple neurodegenerative diseases. To better understand the mechanisms of TDP-43 and FUS toxicity we have created transgenic Caenorhabditis elegans strains that express full-length, untagged human TDP-43 and FUS in the worm's GABAergic motor neurons. Transgenic worms expressing mutant TDP-43 and FUS display adult-onset, age-dependent loss of motility, progressive paralysis and neuronal degeneration that is distinct from wild type alleles. Additionally, mutant TDP-43 and FUS proteins are highly insoluble while wild type proteins remain soluble suggesting that protein misfolding may contribute to toxicity. Populations of mutant TDP-43 and FUS transgenics grown on solid media become paralyzed over 7 to 12 days. We have developed a liquid culture assay where the paralysis phenotype evolves over several hours. We introduce C. elegans transgenics for mutant TDP-43 and FUS motor neuron toxicity that may be used for rapid genetic and pharmacological suppressor screening.  相似文献   

2.
3.
4.
Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration.  相似文献   

5.
TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS) are two highly conserved ribonucleoproteins. Pathogenic mutations of the TDP-43 or the FUS gene are all linked to amyotrophic lateral sclerosis (ALS) that is characterized by progressive degeneration of motor neurons. To better understand the correlation of ALS disease genes with the selectivity of chronic motor neuron degeneration, we examined the longitudinal expression of the TDP-43 and the FUS genes in C57BL6 mice and in Sprague-Dawley rats. TDP-43 and FUS were robustly and ubiquitously expressed in the postnatal mice and rats, but were markedly decreased in the adult rodents. In adulthood, TDP-43 and FUS proteins were even undetectable in peripheral organs including skeletal muscles, liver, and kidney, but were constantly expressed at substantial levels in the central nervous system. Motor neurons expressed the TDP-43 and the FUS genes at robust levels throughout rodent''s lifetime. Moreover, TDP-43 and FUS were accumulated in the cytoplasm of motor neurons in aged animals. Our findings suggest that TDP-43 and FUS play an important role in development and that constant and robust expression of the genes in motor neurons may render the neurons vulnerable to pathogenic mutation of the TDP-43 or the FUS gene. To faithfully model the pathology of TDP-43- or FUS gene mutations in rodents, we must replicate the expression patterns of the TDP-43 and the FUS gene in animals.  相似文献   

6.
7.
8.
Neuronal polarity sets the foundation for information processing and signal transmission within neural networks. However, fundamental question of how a neuron develops and maintains structurally and functionally distinct processes, axons and dendrites, is still an unclear. The simplicity and availability of practical genetic tools makes C. elegans as an ideal model to study neuronal polarity in vivo. In recent years, new studies have identified critical polarity molecules that function at different stages of neuronal polarization in C. elegans. This review focuses on how neurons guided by extrinsic cues, break symmetry, and subsequently recruit intracellular molecules to establish and maintain axon-dendrite polarity in vivo.  相似文献   

9.
The small size and defined connectivity of the C. elegans nervous system and the amenability of this species to systematic functional screens have continued to yield new insights into neuronal differentiation. Many aspects of C. elegans neuronal development resemble those of other more complex neurons. The basic cellular machinery of synaptic transmission is highly conserved. Recent work has begun to unveil the roles of proteoglycans in axon guidance and branching, and of the extracellular matrix in neuronal process maintenance. The importance of ubiquitin-mediated protein turnover in neuronal differentiation is revealed by the identification of new and conserved pathways that promote the organization and function of the synapse.  相似文献   

10.
11.
Understanding the role of TDP-43 and FUS/TLS in ALS and beyond   总被引:1,自引:0,他引:1  
Dominant mutations in two DNA/RNA binding proteins, TDP-43 and FUS/TLS, are causes of inherited Amyotrophic Lateral Sclerosis (ALS). TDP-43 and FUS/TLS have striking structural and functional similarities, implicating alterations in RNA processing as central in ALS. TDP-43 has binding sites within a third of all mouse and human mRNAs in brain and this binding influences the levels and splicing patterns of at least 20% of those mRNAs. Disease modeling in rodents of the first known cause of inherited ALS-mutation in the ubiquitously expressed superoxide dismutase (SOD1)-has yielded non-cell autonomous fatal motor neuron disease caused by one or more toxic properties acquired by the mutant proteins. In contrast, initial disease modeling for TDP-43 and FUS/TLS has produced highly varied phenotypes. It remains unsettled whether TDP-43 and FUS/TLS mutants provoke disease from a loss of function or gain of toxicity or both. TDP-43 or FUS/TLS misaccumulation seems central not just to ALS (where it is found in almost all instances of disease), but more broadly in neurodegenerative disease, including frontal temporal lobular dementia (FTLD-U) and many examples of Alzheimer's or Huntington's disease.  相似文献   

12.
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) are major neurodegenerative diseases with TDP-43 pathology. Here we investigated the effects of methylene blue (MB) and dimebon, two compounds that have been reported to be beneficial in phase II clinical trials of Alzheimer’s disease (AD), on the formation of TDP-43 aggregates in SH-SY5Y cells. Following treatment with 0.05 μM MB or 5 μM dimebon, the number of TDP-43 aggregates was reduced by 50% and 45%, respectively. The combined use of MB and dimebon resulted in a 80% reduction in the number. These findings were confirmed by immunoblot analysis. The results indicate that MB and dimebon may be useful for the treatment of ALS, FTLD-U and other TDP-43 proteinopathies.  相似文献   

13.
《Cell reports》2020,30(2):367-380.e7
  1. Download : Download high-res image (186KB)
  2. Download : Download full-size image
  相似文献   

14.
15.
Given the critical role for TDP-43 in diverse neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), there has been a recent surge in efforts to understand the normal functions of TDP-43 and the molecular basis of dysregulation that occurs in TDP-43 proteinopathies. Here, we highlight recent findings examining TDP-43 molecular functions with particular emphasis on stress-mediated regulation of TDP-43 localization, putative downstream TDP-43 target genes and RNAs, as well as TDP-43 interacting proteins, all of which represent viable points of therapeutic intervention for ALS, FTLD-TDP and related proteinopathies. Finally, we review current mouse models of TDP-43 and discuss their similarities and potential relevance to human TDP-43 proteinopathies including ALS and FTLD-TDP.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease. To date, there is no any effective pharmacological treatment for improving patients'' symptoms and quality of life. Rapidly emerging evidence suggests that C-terminal fragments (CTFs) of TAR DNA-binding protein of 43 kDa (TDP-43), including TDP-35 and TDP-25, may play an important role in ALS pathogenesis. Valproate (VPA), a widely used antiepileptic drug, has neuroprotective effects on neurodegenerative disorders. As for ALS, preclinical studies also provide encouraging evidence for multiple beneficial effects in ALS mouse models. However, the potential molecular mechanisms have not been explored. Here, we show protective effects of VPA against TDP-43 CTFs-mediated neuronal toxicity and its underlying mechanisms in vitro. Remarkably, TDP-43 CTFs induced neuronal damage via endoplastic reticulum (ER) stress-mediated apoptosis. Furthermore, autophagic self-defense system was activated to reduce TDP-43 CTFs-induced neuronal death. Finally, VPA attenuated TDP-25-induced neuronal toxicity via suppressing ER stress-mediated apoptosis and enhancing autophagy. Taken together, these results demonstrate that VPA exerts neuroprotective effects against TDP-43 CTFs-induced neuronal damage. Thus, we provide new molecular evidence for VPA treatment in patients with ALS and other TDP-43 proteinopathies.  相似文献   

17.
The simplicity and genetic tractability of the nervous system of the nematode Caenorhabditis elegans make it an attractive system in which to seek biological mechanisms of decision making. Although work in this area remains at an early stage, four basic types paradigms of behavioral choice, a simple form of decision making, have now been demonstrated in C. elegans. A recent series of pioneering studies, combining genetics and molecular biology with new techniques such as microfluidics and calcium imaging in freely moving animals, has begun to elucidate the neuronal mechanisms underlying behavioral choice. The new research has focussed on choice behaviors in the context of habitat and resource localization, for which the neuronal circuit has been identified. Three main circuit motifs for behavioral choice have been identified. One motif is based mainly on changes in the strength of synaptic connections whereas the other two motifs are based on changes in the basal activity of an interneuron and the sensory neuron to which it is electrically coupled. Peptide signaling seems to play a prominent role in all three motifs, and it may be a general rule that concentrations of various peptides encode the internal states that influence behavioral decisions in C. elegans.  相似文献   

18.
Mutation of TAR DNA-binding protein-43 (TDP-43) was detected in familiar and sporadic amyotrophic lateral sclerosis, and pathological TDP-43 was identified in the frontotemporal lobar degeneration. The neuroprotective functions of curcumin derivatives were assessed in motor neurons transfected with mutant TDP-43. We found that curcumin derivatives reduced the levels of TDP-43 fragments. Furthermore, we evaluated these compounds on the cellular model that the cells were transfected with TDP-25. We found that the expression level and aggregate formation of TDP-25 were significantly reduced by monocarbonyl dimethoxycurcumin C (Compound C). To study on the neuroprotective functions of curcumin derivatives, the neuroblastoma-spinal cord-34 cells transfected with mutant TDP-43 were assessed by the level of lactate dehydrogenase (LDH) and malondialdehyde bisdimethyl acetal (MDA) that were involved in the oxidative stress. We found that Compound C ameliorated the damage of mutant TDP-43 by reducing the level of MDA and LDH. Furthermore, heme oxygenase-1 (HO-1) was induced by Compound C significantly higher than other compounds. Znpp, which is known an inhibitor of HO-1, dramatically interfered with the function of Compound C. In addition, Compound C was tested in vivo, and HO-1 was significantly upregulated at the hippocampus. These findings suggest that Compound C, which degrades TDP-43 fragment and strengthens the antioxidant ability by HO-1, is a promising agent for TDP-43 proteinopathy.  相似文献   

19.
20.
Cytoplasmic inclusions containing TAR DNA-binding protein of 43 kDa (TDP-43) or Fused in sarcoma (FUS) are a hallmark of amyotrophic lateral sclerosis (ALS) and several subtypes of frontotemporal lobar degeneration (FTLD). FUS-positive inclusions in FTLD and ALS patients are consistently co-labeled with stress granule (SG) marker proteins. Whether TDP-43 inclusions contain SG markers is currently still debated. We determined the requirements for SG recruitment of FUS and TDP-43 and found that cytoplasmic mislocalization is a common prerequisite for SG recruitment of FUS and TDP-43. For FUS, the arginine-glycine-glycine zinc finger domain, which is the protein's main RNA binding domain, is most important for SG recruitment, whereas the glycine-rich domain and RNA recognition motif (RRM) domain have a minor contribution and the glutamine-rich domain is dispensable. For TDP-43, both the RRM1 and the C-terminal glycine-rich domain are required for SG localization. ALS-associated point mutations located in the glycine-rich domain of TDP-43 do not affect SG recruitment. Interestingly, a 25-kDa C-terminal fragment of TDP-43, which is enriched in FTLD/ALS cortical inclusions but not spinal cord inclusions, fails to be recruited into SG. Consistently, inclusions in the cortex of FTLD patients, which are enriched for C-terminal fragments, are not co-labeled with the SG marker poly(A)-binding protein 1 (PABP-1), whereas inclusions in spinal cord, which contain full-length TDP-43, are frequently positive for this marker protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号