首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Purpose

Complications due to brain edema and breakdown of blood brain barrier are an important factor affecting the treatment effects of patients with severe carotid stenosis. In this study, we investigated the protective effects of ischemic postconditioning on brain edema and disruption of blood brain barrier via establishing rat model of hypoperfusion due to severe carotid stenosis.

Methods

Wistar rat model of hypoperfusion due to severe carotid stenosis was established by binding a stainless microtube to both carotid arteries. Ischemic postconditioning procedure consisted of three cycles of 30 seconds ischemia and 30 seconds reperfusion. Brain edema was evaluated by measuring cerebral water content, and blood brain barrier permeability was assayed by examining cerebral concentration of Evans'' Blue (EB) and fluorescein sodium (NaF). ELISA was used to analyze the expression of MMP-9, claudin-5 and occludin. The activity and location of MMP-9 was analyzed by gelatin zymography and in situ zymography, respectively. The distribution of tight junction proteins claudin-5 and occludin was observed by immunohistochemistry.

Results

The increased brain water content and cerebral concentration of EB and NaF were suppressed by administration of ischemic postconditioning prior to relief of carotid stenosis. Zymographic studies showed that MMP-9 was mainly located in the cortex and its activity was significantly improved by relief of carotid stenosis and, but the elevated MMP-9 activity was inhibited markedly by ischemic postconditioning. Immunohistochemistry revealed that ischemic postconditioning improved the discontinuous distribution of claudin-5 and occludin. ELISA detected that the expression of up-regulated MMP-9 and down-regulated claudin-5 and occludin caused by carotid relief were all attenuated by ischemic postconditioning.

Conclusions

Ischemic postconditioning is an effective method to prevent brain edema and improve BBB permeability and could be used during relief of severe carotid stenosis.  相似文献   

2.

Background

The cadmium (Cd) present in air pollutants and cigarette smoke has the potential of causing multiple adverse health outcomes involving damage to pulmonary and cardiovascular tissue. Injury to pulmonary epithelium may include alterations in tight junction (TJ) integrity, resulting in impaired epithelial barrier function and enhanced penetration of chemicals and biomolecules. Herein, we investigated mechanisms involved in the disruption of TJ integrity by Cd exposure using an in vitro human air-liquid-interface (ALI) airway tissue model derived from normal primary human bronchial epithelial cells.

Methods

ALI cultures were exposed to noncytotoxic doses of CdCl2 basolaterally and TJ integrity was measured by Trans-Epithelial Electrical Resistance (TEER) and immunofluorescence staining with TJ markers. PCR array analysis was used to identify genes involved with TJ collapse. To explore the involvement of kinase signaling pathways, cultures were treated with CdCl2 in the presence of kinase inhibitors specific for cellular Src or Protein Kinase C (PKC).

Results

Noncytotoxic doses of CdCl2 resulted in the collapse of barrier function, as demonstrated by TEER measurements and Zonula occludens-1 (ZO-1) and occludin staining. CdCl2 exposure altered the expression of several groups of genes encoding proteins involved in TJ homeostasis. In particular, down-regulation of select junction-interacting proteins suggested that a possible mechanism for Cd toxicity involves disruption of the peripheral junctional complexes implicated in connecting membrane-bound TJ components to the actin cytoskeleton. Inhibition of kinase signaling using inhibitors specific for cellular Src or PKC preserved the integrity of TJs, possibly by preventing occludin tyrosine hyperphosphorylation, rather than reversing the down-regulation of the junction-interacting proteins.

Conclusions

Our findings indicate that acute doses of Cd likely disrupt TJ integrity in human ALI airway cultures both through occludin hyperphosphorylation via kinase activation and by direct disruption of the junction-interacting complex.  相似文献   

3.

Background

Inflammatory bowel disease (IBD) increases the risk of colorectal cancer. Probiotic bacteria produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anti-carcinogenic effects. This study aimed to investigate the cellular and molecular mechanisms underlying the efficacy of probiotic bacteria in mouse models of cancer.

Methodology/Principal Findings

The immune modulatory mechanisms of VSL#3 probiotic bacteria and CLA were investigated in mouse models of inflammation-driven colorectal cancer. Colonic specimens were collected for histopathology, gene expression and flow cytometry analyses. Immune cell subsets in the mesenteric lymph nodes (MLN), spleen and colonic lamina propria lymphocytes (LPL) were phenotypically and functionally characterized. Mice treated with CLA or VSL#3 recovered faster from the acute inflammatory phase of disease and had lower disease severity in the chronic, tumor-bearing phase of disease. Adenoma and adenocarcinoma formation was also diminished by both treatments. VSL#3 increased the mRNA expression of TNF-α, angiostatin and PPAR γ whereas CLA decreased COX-2 levels. Moreover, VSL#3-treated mice had increased IL-17 expression in MLN CD4+ T cells and accumulation of Treg LPL and memory CD4+ T cells.

Conclusions/Significance

Both CLA and VSL#3 suppressed colon carcinogenesis, although VSL#3 showed greater anti-carcinogenic and anti-inflammatory activities than CLA. Mechanistically, CLA modulated expression of COX-2 levels in the colonic mucosa, whereas VSL#3 targeted regulatory mucosal CD4+ T cell responses.  相似文献   

4.

Background

Idiopathic inflammatory bowel disease (IBD) is a common chronic enteropathy in dogs. There are no published studies regarding the use of probiotics in the treatment of canine IBD. The objectives were to compare responses to treatment with either combination therapy (prednisone and metronidazole) or probiotic strains (VSL#3) in dogs with IBD.

Methodology and Principal Findings

Twenty pet dogs with a diagnosis of IBD, ten healthy pet dogs, and archived control intestinal tissues from three euthanized dogs were used in this open label study. Dogs with IBD were randomized to receive either probiotic (D-VSL#3, n = 10) or combination drug therapy (D-CT, n = 10). Dogs were monitored for 60 days (during treatment) and re-evaluated 30 days after completing treatment. The CIBDAI (P<0.001), duodenal histology scores (P<0.001), and CD3+ cells decreased post-treatment in both treatment groups. FoxP3+ cells (p<0.002) increased in the D-VSL#3 group after treatment but not in the D-CT group. TGF-β+ cells increased in both groups after treatment (P = 0.0043) with the magnitude of this increase being significantly greater for dogs in the D-VSL#3 group compared to the D-CT group. Changes in apical junction complex molecules occludin and claudin-2 differed depending on treatment. Faecalibacterium and Turicibacter were significantly decreased in dogs with IBD at T0, with a significant increase in Faecalibacterium abundance observed in the animals treated with VSL#3 strains.

Conclusions

A protective effect of VSL#3 strains was observed in dogs with IBD, with a significant decrease in clinical and histological scores and a decrease in CD3+ T-cell infiltration. Protection was associated with an enhancement of regulatory T-cell markers (FoxP3+ and TGF-β+), specifically observed in the probiotic-treated group and not in animals receiving combination therapy. A normalization of dysbiosis after long-term therapy was observed in the probiotic group. Larger scale studies are warranted to evaluate the clinical efficacy of VSL#3 in canine IBD.  相似文献   

5.

Background

Niemann-Pick type C (NPC) disease is a lysosomal storage disease characterized by the accumulation of cholesterol and glycosphingolipids. The majority of NPC patients die in their teen years due to progressive neurodegeneration; however, half of NPC patients also suffer from cholestasis, prolonged jaundice, and hepatosplenomegaly. We previously showed that a key mediator of NPC liver disease is tumor necrosis factor (TNF) α, which is involved in both proinflammatory and apoptotic signaling cascades. In this study, we tested the hypothesis that blocking TNF action with an anti-TNF monoclonal antibody (CNTO5048) will slow the progression of NPC liver disease.

Methodology/Principal Findings

Treatment of wild-type C57BL/6 mice with NPC1-specific antisense oligonucleotides led to knockdown of NPC1 protein expression in the liver. This caused classical symptoms of NPC liver disease, including hepatic cholesterol accumulation, hepatomegaly, elevated serum liver enzymes, and lipid laden macrophage accumulation. In addition, there was a significant increase in the number of apoptotic cells and a proliferation of stellate cells. Concurrent treatment of NPC1 knockdown mice with anti-TNF had no effect on the primary lipid storage or accumulation of lipid-laden macrophages. However, anti-TNF treatment slightly blunted the increase in hepatic apoptosis and stellate cell activation that was seen with NPC1 knockdown.

Conclusions/Significance

Current therapeutic options for NPC disease are limited. Our results provide proof of principle that pharmacologically blocking the TNF-α inflammatory cascade can slightly reduce certain markers of NPC disease. Small molecule inhibitors of TNF that penetrate tissues and cross the blood-brain barrier may prove even more beneficial.  相似文献   

6.

Background

Inflammatory bowel disease (IBD) therapies are modestly successful and associated with significant side effects. Thus, the investigation of novel approaches to prevent colitis is important. Probiotic bacteria can produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anti-inflammatory effects. This study aimed to investigate the cellular and molecular mechanisms underlying the anti-inflammatory efficacy of probiotic bacteria using a mouse model of colitis.

Methodology/Principal Findings

The immune modulatory mechanisms of VSL#3 probiotic bacteria and CLA were investigated in a mouse model of DSS colitis. Colonic specimens were collected for histopathology, gene expression and flow cytometry analyses. Immune cell subsets in the mesenteric lymph nodes (MLN), spleen, blood and colonic lamina propria cells were phenotypically and functionally characterized. Fecal samples and colonic contents were collected to determine the effect of VSL#3 and CLA on gut microbial diversity and CLA production. CLA and VSL#3 treatment ameliorated colitis and decreased colonic bacterial diversity, a finding that correlated with decreased gut pathology. Colonic CLA concentrations were increased in response to probiotic bacterial treatment, but without systemic distribution in blood. VSL#3 and CLA decreased macrophage accumulation in the MLN of mice with DSS colitis. The loss of PPAR γ in myeloid cells abrogated the protective effect of probiotic bacteria and CLA in mice with DSS colitis.

Conclusions/Significance

Probiotic bacteria modulate gut microbial diversity and favor local production of CLA in the colon that targets myeloid cell PPAR γ to suppress colitis.  相似文献   

7.

Introduction

Anti-TNF therapies have revolutionized the treatment of rheumatoid arthritis (RA), a common systemic autoimmune disease involving destruction of the synovial joints. However, in the practice of rheumatology approximately one-third of patients demonstrate no clinical improvement in response to treatment with anti-TNF therapies, while another third demonstrate a partial response, and one-third an excellent and sustained response. Since no clinical or laboratory tests are available to predict response to anti-TNF therapies, great need exists for predictive biomarkers.

Methods

Here we present a multi-step proteomics approach using arthritis antigen arrays, a multiplex cytokine assay, and conventional ELISA, with the objective to identify a biomarker signature in three ethnically diverse cohorts of RA patients treated with the anti-TNF therapy etanercept.

Results

We identified a 24-biomarker signature that enabled prediction of a positive clinical response to etanercept in all three cohorts (positive predictive values 58 to 72%; negative predictive values 63 to 78%).

Conclusions

We identified a multi-parameter protein biomarker that enables pretreatment classification and prediction of etanercept responders, and tested this biomarker using three independent cohorts of RA patients. Although further validation in prospective and larger cohorts is needed, our observations demonstrate that multiplex characterization of autoantibodies and cytokines provides clinical utility for predicting response to the anti-TNF therapy etanercept in RA patients.  相似文献   

8.

Background

Prolonged exposure to hyperoxia in neonates can cause hyperoxic acute lung injury (HALI), which is characterized by increased pulmonary permeability and diffuse infiltration of various inflammatory cells. Disruption of the epithelial barrier may lead to altered pulmonary permeability and maintenance of barrier properties requires intact epithelial tight junctions (TJs). However, in neonatal animals, relatively little is known about how the TJ proteins are expressed in the pulmonary epithelium, including whether expression of TJ proteins is regulated in response to hyperoxia exposure. This study determines whether changes in tight junctions play an important role in disruption of the pulmonary epithelial barrier during hyperoxic acute lung injury.

Methods

Newborn rats, randomly divided into two groups, were exposed to hyperoxia (95% oxygen) or normoxia for 1–7 days, and the severity of lung injury was assessed; location and expression of key tight junction protein occludin and ZO-1 were examined by immunofluorescence staining and immunobloting; messenger RNA in lung tissue was studied by RT-PCR; transmission electron microscopy study was performed for the detection of tight junction morphology.

Results

We found that different durations of hyperoxia exposure caused different degrees of lung injury in newborn rats. Treatment with hyperoxia for prolonged duration contributed to more serious lung injury, which was characterized by increased wet-to-dry ratio, extravascular lung water content, and bronchoalveolar lavage fluid (BALF):serum FD4 ratio. Transmission electron microscopy study demonstrated that hyperoxia destroyed the structure of tight junctions and prolonged hyperoxia exposure, enhancing the structure destruction. The results were compatible with pathohistologic findings. We found that hyperoxia markedly disrupted the membrane localization and downregulated the cytoplasm expression of the key tight junction proteins occludin and ZO-1 in the alveolar epithelium by immunofluorescence. The changes of messenger RNA and protein expression of occludin and ZO-1 in lung tissue detected by RT-PCR and immunoblotting were consistent with the degree of lung injury.

Conclusions

These data suggest that the disruption of the pulmonary epithelial barrier induced by hyperoxia is, at least in part, due to massive deterioration in the expression and localization of key TJ proteins.  相似文献   

9.

Background

Signals generated by the inflammed intestine are thought to contribute to metabolic derangement. The intestinal microbiota contributes to instructing the immune system beyond the intestinal wall and its modulation is a potential target for treating systemic disorders.

Aims

To investigate the pathogenetic role of low grade intestinal inflammation in the development of steatohepatitis and atherosclerosis in a model of genetic dyslipidemia and to test the therapeutic potential of a probiotics intervention in protecting against development of these disorders.

Results

ApoE−/− mice were randomized to receive vehicle or VSL#3, a mixture of eight probiotics, at the dose of 20×109 colony-forming units/kg/day for three months alone or in combination with 0.2% of dextran sulfate sodium (DSS) in drinking water. Administering DSS to ApoE−/− mice failed to induce signs and symptoms of colitis but increased intestinal permeability to dextran FITC and, while had no effect on serum lipids, increased the blood levels of markers of liver injury and insulin resistance. DSS administration associated with low level inflammation of intestinal and mesenteric adipose tissues, caused liver histopathology features of steatohepatitis and severe atherosclerotic lesions in the aorta. These changes were prevented by VSL#3 intervention. Specifically, VSL#3 reversed insulin resistance, prevented development of histologic features of mesenteric adipose tissue inflammation, steatohepatitis and reduced the extent of aortic plaques. Conditioned media obtained from cultured probiotics caused the direct transactivation of peroxisome proliferator-activated receptor-γ, Farnesoid-X-receptors and vitamin D receptor.

Conclusions

Low grade intestinal inflammation drives a transition from steatosis to steatohepatitis and worsens the severity of atherosclerosis in a genetic model of dyslipidemia. VSL#3 intervention modulates the expression of nuclear receptors, corrects for insulin resistance in liver and adipose tissues and protects against development of steatohepatitis and atherosclerosis.  相似文献   

10.

Objective

To investigate the protective effects and mechanisms of carbon monoxide-releasing molecule-2 (CORM-2) on barrier function of intestinal epithelial cells.

Materials and Methods

After pre-incubation with CORM-2 for 1 hour, cultured intestinal epithelial IEC-6 cells were stimulated with 50 µg/ml lipopolysaccharides (LPS). Cytokines levels in culture medium were detected using ELISA kits. Trans-epithelial electrical resistance (TER) of IEC-6 cell monolayers in Transwells were measured with a Millipore electric resistance system (ERS-2; Millipore) and calculated as Ω/cm2 at different time points after LPS treatment. The permeability changes were also measured using FITC-dextran. The levels of tight junction (TJ) proteins (occludin and ZO-1) and myosin light chain (MLC) phosphorylation were detected using Western blotting with specific antibodies. The subsequent structural changes of TJ were visualized using transmission electron microscopy (TEM).

Results

CORM-2 significantly reduced LPS-induced secretion of TNF-α and IL-1β. The LPS-induced decrease of TER and increase of permeability to FITC-dextran were inhibited by CORM-2 in a concentration dependent manner (P<0.05). LPS-induced reduction of tight junction proteins and increase of MLC phosphorylation were also attenuated. In LPS-treated cells, TEM showed diminished electron-dense material and interruption of TJ and desmosomes between the apical lateral margins of adjoining cells, which were prevented by CORM-2 treatment.

Conclusions

The present study demonstrates that CORM-2, as a novel CO-releasing molecule, has ability to protect the barrier function of LPS-stimulated intestinal epithelial cells. Inhibition of inflammatory cytokines release, restoration of TJ proteins and suppression of MLC phosphorylation are among the protective effects of CORM-2.  相似文献   

11.

Background

Adipocytes from mesenteric white adipose tissue amplify the inflammatory response and participate in inflammation-driven immune dysfunction in Crohn''s disease by releasing proinflammatory mediators. Peroxisome proliferator-activated receptors (PPAR)-α and -γ, pregnane x receptor (PXR), farnesoid x receptor (FXR) and liver x-receptor (LXR) are ligand-activated nuclear receptor that provide counter-regulatory signals to dysregulated immunity and modulates adipose tissue.

Aims

To investigate the expression and function of nuclear receptors in intestinal and adipose tissues in a rodent model of colitis and mesenteric fat from Crohn''s patients and to investigate their modulation by probiotics.

Methods

Colitis was induced by TNBS administration. Mice were administered vehicle or VSL#3, daily for 10 days. Abdominal fat explants obtained at surgery from five Crohn''s disease patients and five patients with colon cancer were cultured with VSL#3 medium.

Results

Probiotic administration attenuated development of signs and symptoms of colitis, reduced colonic expression of TNFα, IL-6 and IFNγ and reserved colonic downregulation of PPARγ, PXR and FXR caused by TNBS. Mesenteric fat depots isolated from TNBS-treated animals had increased expression of inflammatory mediators along with PPARγ, FXR, leptin and adiponectin. These changes were prevented by VSL#3. Creeping fat and mesenteric adipose tissue from Crohn''s patients showed a differential expression of PPARγ and FXR with both tissue expressing high levels of leptin. Exposure of these tissues to VSL#3 medium abrogates leptin release.

Conclusions

Mesenteric adipose tissue from rodent colitis and Crohn''s disease is metabolically active and shows inflammation-driven regulation of PPARγ, FXR and leptin. Probiotics correct the inflammation-driven metabolic dysfunction.  相似文献   

12.

Background

Endothelial dysfunction is an early sign of diabetic cardiovascular disease and may contribute to progressive diabetic nephropathy (DN). There is increasing evidence that dysfunction of the endothelial tight junction is a crucial step in the development of endothelial hyperpermeability, but it is unknown whether this occurs in glomerular endothelial cells (GEnCs) during the progression of DN. We examined tight junction dysfunction of GEnCs during early-stage DN and the potential underlying mechanisms. We also examined the effect of simvastatin (3-Hydroxy-3-methylglutaryl CoA reductase inhibitor) on dysfunction of the tight junctions of cultured GEnCs and in db/db mice with early-stage DN.

Methods

We assessed the expression of occludin and ZO-1, two major components of the tight junction complex, in cultured rat GEnCs treated with high glucose and in 12 week-old db/db mice with early-stage DN. We also investigated activation of RhoA/ROCK1 signaling, GEnC permeability, and renal function of the mice.

Results

High glucose suppresses occludin expression and disrupts occludin/ZO-1 translocation in GEnCs. These changes were associated with increased permeability to albumin and activation of RhoA/ROCK1 signaling. Occludin and ZO-1 dysregulation also occurred in the glomeruli of mice with early-stage DN, and these abnormalities were accompanied by albuminuria and activation of RhoA/ROCK1 in isolated glomeruli. Simvastatin prevented high glucose or hyperglycemia-induced dysregulation of occludin and ZO-1 by inhibition of RhoA/ROCK1 signaling in cultured GEnCs and in db/db mice with early-stage DN.

Conclusion

Our results indicate that activation of RhoA/ROCK1 by high glucose disrupts the expression and translocation of occludin/ZO-1 and that simvastatin alleviates occludin/ZO-1 dysregulation and albuminuria by suppressing RhoA/ROCK1 signaling during early-stage DN. These results suggest a potential therapeutic strategy for preventing the onset of albuminuria in early-stage DN.  相似文献   

13.

Background

Matrix metalloproteinases (MMPs) 2 and 9 are two gelatinase members which have been found elevated in exudative pleural effusions. In endothelial cells these MMPs increase paracellular permeability via the disruption of tight junction (TJ) proteins occludin and claudin. In the present study it was investigated if MMP2 and MMP9 alter permeability properties of the pleura tissue by degradation of TJ proteins in pleural mesothelium.

Results

In the present study the transmesothelial resistance (RTM) of sheep pleura tissue was recorded in Ussing chambers after the addition of MMP2 or MMP9. Both enzymes reduced RTM of the pleura, implying an increase in pleural permeability. The localization and expression of TJ proteins, occludin and claudin-1, were assessed after incubation with MMPs by indirect immunofluorescence and western blot analysis. Our results revealed that incubation with MMPs did not alter neither proteins localization at cell periphery nor their expression.

Conclusions

MMP2 and MMP9 increase the permeability of sheep pleura and this finding suggests a role for MMPs in pleural fluid formation. Tight junction proteins remain intact after incubation with MMPs, contrary to previous studies which have shown TJ degradation by MMPs. Probably MMP2 and MMP9 augment pleural permeability via other mechanisms.
  相似文献   

14.
SAMP1/Fc mice develop spontaneous ileitis that shares many features with human Crohn's disease. One of the earliest features of ileitis in SAMP1/Fc mice is an increase in the number of ileal goblet and intermediate cells. Resistin-like molecule beta (RELMbeta) is a goblet cell-specific, cysteine-rich peptide previously shown to function as part of the innate immune response. In this study, we examined the role of expression of RELMbeta in the initiation of ileal inflammation in SAMP1/Fc mice. RELMbeta was highly induced in the ilea of SAMP1/Fc mice beginning at age 5 wk, coincident with the histological appearance of inflammation. RELMbeta was found in ileal goblet cells and some intermediate and Paneth cells. Surprisingly, RELMbeta mRNA levels were significantly increased in the ilea of 80% of germ-free SAMP1/Fc mice examined compared with specific pathogen-free AKR control mice of similar age. Ileitis was observed in germfree SAMP1/Fc mice, although it was attenuated relative to specific pathogen-free SAMP1/Fc mice. These data suggest that neither the early induction of RELMbeta expression nor ileal inflammation requires the presence of viable intestinal flora. Neither was the induction of RELMbeta dependent on the major Th1 or Th2 cytokines. However, RELMbeta stimulated naive bone marrow-derived macrophages to secrete significant amounts of TNF-alpha, IL-6, and RANTES. Our data suggest that RELMbeta is involved in the initiation of ileitis in SAMP1/Fc mice and may act through the induction of proinflammatory cytokines from resident immune cells within the mucosa.  相似文献   

15.
Disturbance of the tight junction (TJ) complexes between brain endothelial cells leads to increased paracellular permeability, allowing leukocyte entry into inflamed brain tissue and also contributing to edema formation. The current study dissects the mechanisms by which a chemokine, CCL2, induces TJ disassembly. It investigates the potential role of selective internalization of TJ transmembrane proteins (occludin and claudin-5) in increased permeability of the brain endothelial barrier in vitro. To map the internalization and intracellular fate of occludin and claudin-5, green fluorescent protein fusion proteins of these TJ proteins were generated and imaged by fluorescent microscopy with simultaneous measurement of transendothelial electrical resistance. During CCL2-induced reductions in transendothelial electrical resistance, claudin-5 and occludin became internalized via caveolae and further processed to early (EEA1+) and recycling (Rab4+) endosomes but not to late endosomes. Western blot analysis of fractions collected from a sucrose gradient showed the presence of claudin-5 and occludin in the same fractions that contained caveolin-1. For the first time, these results suggest an underlying molecular mechanism by which the pro-inflammatory chemokine CCL2 mediates brain endothelial barrier disruption during CNS inflammation.The blood-brain barrier is situated at the cerebral endothelial cells and their linking tight junctions. Increased brain endothelial barrier permeability is associated with remodeling of inter-endothelial tight junction (TJ)2 complex and gap formation between brain endothelial cells (paracellular pathway) and/or intensive pinocytotic vesicular transport between the apical and basal side of brain endothelial cells (transcellular pathway) (1, 2). The transcellular pathway can be either passive or active and is characterized by low conductance and high selectivity. In contrast, the paracellular pathway is exclusively passive, being driven by electrochemical and osmotic gradients, and has a higher conductance and lower selectivity (3).Brain endothelial barrier paracellular permeability is maintained by an equilibrium between contractile forces generated at the endothelial cytoskeleton and adhesive forces produced at endothelial cell-cell junctions and cell-matrix contacts (13). A dynamic interaction among these structural elements controls opening and closing of the paracellular pathway and serves as a fundamental mechanism regulating blood-brain exchange. How this process occurs is under intense investigation. Two possible mechanisms may potentially increase paracellular permeability: phosphorylation of TJ proteins and/or endocytosis of transmembrane TJ proteins.Changes in TJ protein phosphorylation seem to be required to initiate increased brain endothelial permeability and a redistribution of most TJ proteins away from the cell border (48). Endocytosis may also be involved in remodeling TJ complexes between endothelial cells. Several types of endocytosis may be involved in TJ protein uptake, including clathrin- and caveolae-mediated endocytosis and macropinocytosis (for reviews, see Refs. 8 and 912). After first forming cell membrane-derived endocytotic vesicles, these vesicles fuse with early endosomes whose contents are further sorted for transport to lysosomes for degradation or recycling back to the plasma membrane for reuse (11).Although there is a lack of definitive knowledge regarding endocytotic internalization of brain endothelial cell TJ proteins, several studies on epithelial cells have indicated that occludin may be internalized via caveolae-mediated endocytosis whereas ZO-1, claudin-1, and junctional adhesion molecules-A may undergo macropinocytosis in response to stimuli such as TNF-α and INF-γ (13, 14). In contrast, there is evidence that Ca2+ may induce internalization of claudin-1 and occludin via clathrin-coated vesicles (8, 1416). All of these studies pinpoint endocytosis as an underlying process in TJ complex remodeling and redistribution, and thus regulation of paracellular permeability in epithelial cells.The present study examines whether internalization of transmembrane TJ proteins could be one process by which adhesion between brain endothelial cells is changed during increased paracellular permeability. Our results show that a pro-inflammatory mediator, the chemokine CCL2, induces disassembly of the TJ complex by triggering caveolae-dependent internalization of transmembrane TJ proteins (occludin and claudin-5). Once internalized, occludin and claudin-5 are further processed to recycling endosomes awaiting return to the plasma membrane.  相似文献   

16.

Background

Tumour necrosis factor (TNF) is crucial for the control of mycobacterial infection as TNF deficient (KO) die rapidly of uncontrolled infection with necrotic pneumonia. Here we investigated the role of membrane TNF for host resistance in knock-in mice with a non-cleavable and regulated allele (mem-TNF).

Methods

C57BL/6, TNF KO and mem-TNF mice were infected with M. tuberculosis H37Rv (Mtb at 100 CFU by intranasal administration) and the survival, bacterial load, lung pathology and immunological parameters were investigated. Bone marrow and lymphocytes transfers were used to test the role of membrane TNF to confer resistance to TNF KO mice.

Results

While TNF-KO mice succumbed to infection within 4–5 weeks, mem-TNF mice recruited normally T cells and macrophages, developed mature granuloma in the lung and controlled acute Mtb infection. However, during the chronic phase of infection mem-TNF mice succumbed to disseminated infection with necrotic pneumonia at about 150 days. Reconstitution of irradiated TNF-KO mice with mem-TNF derived bone marrow cells, but not with lymphocytes, conferred host resistance to Mtb infection in TNF-KO mice.

Conclusion

Membrane expressed TNF is sufficient to allow cell-cell signalling and control of acute Mtb infection. Bone marrow cells, but not lymphocytes from mem-TNF mice confer resistance to infection in TNF-KO mice. Long-term infection control with chronic inflammation likely disrupting TNF mediated cell-cell signalling, additionally requires soluble TNF.  相似文献   

17.
Senescence-accelerated mouse prone 6 (SAMP6) is a model of senile osteoporosis. From 10 to 22 wk of age, SAMP6 mice were heavier than age-matched AKR/J and SAMR1 mice. Body mass indices of 10- and 25-wk-old SAMP6 mice were higher than those of age-matched AKR/J and SAMR1 mice, indicating obesity in the SAMP6 animals. We compared the blood biochemical values among SAMP6, SAMR1, and AKR/J mice to assess whether the SAMP6 strain has abnormal obesity-related parameters. Plasma glucose, triglyceride, insulin, and leptin levels were higher in 10-wk-old SAMP6 mice than in age-matched SAMR1 and AKR/J mice, whereas plasma glucagon and adiponectin levels in 25-wk-old SAMP6 were lower compared with those in age-matched SAMR1 and AKR/J. Total cholesterol levels in SAMR1 and SAMP6 mice at 10 and 25 wk of age were higher than those in AKR/J mice. Hepatic lipid levels were higher in 10- and 25-wk-old SAMP6 mice compared with age-matched AKR/J and SAMR1 animals. These results indicate that SAMP6 mice exhibit obesity and hyperlipidemia, suggesting that the SAMP6 strain is a potential tool for the study of hyperlipidemia.Abbreviations: BMI, body mass indexThe senescence-accelerated mouse strains were developed through selective breeding of AKR/J mice based on graded scores for senescence and pathologic phenotypes.44 The 9 senescence-prone (SAMP) strains all have a shortened lifespan and display an early onset of senescence after normal development and maturation, whereas the 3 senescence-resistant (SAMR) strains are resistant to early senescence and serve as controls. Among the SAMP strains, SAMP8 and SAMP10 exhibit deficits in learning and memory at a relatively early stage in their lifespan.6,30 In contrast, SAMP6 mice are considered to be a model of senile osteoporosis, with their low bone mass and slow bone loss;24 the bone mineral density of SAMP6 mice decreases after 4 mo of age.14,17Our regular measurement of body weight revealed that SAMP6 mice were significantly higher between 10 and 22 wk of age than were age-matched SAMR1 and AKR/J. Based on this observation, we decided to compare body mass indices (BMIs), blood biochemical values, and liver sections among mice of these strains at 10 and 25 wk of age, which respectively correspond to the beginning and end of a period of significant body weight gain in SAMP6 mice compared with age-matched SAMR1 and AKR/J. Increased BMIs of SAMP6 mice at 10- and 25 wk compared with those of age-matched AKR/J and SAMR1 animals would indicate obesity in the SAMP6. In addition, because osteoblasts and adipocytes are thought to share a common precursor cell, osteoporosis and enhanced adipogenesis may be related. For example, adipogenesis in the bone marrow increases with aging and during osteoporosis,15,33,34 and increased bone turnover occurs in hypercholesterolemic or dyslipidemic patients.22 Therefore obesity in SAMP6 mice might be due at least in part to enhanced adipogenesis. We measured and compared blood biochemical values among SAMP6, SAMR1, and AKR/J (the founder for the SAM strains) mice to assess whether the SAMP6 strain has abnormalities in blood biochemical markers, such as triglycerides or cholesterol.  相似文献   

18.

Objective

Damage to intestinal epithelial tight junctions plays an important role in sepsis. Recently we found that Carbon Monoxide-Releasing Molecule-2 (CORM-2) is able to protect LPS-induced intestinal epithelial tight junction damage and in this study we will investigate if CORM-2 could protect intestinal epithelial tight junctions in the rat cecal ligation and puncture (CLP) model.

Materials and Methods

The CLP model was generated using male Sprague-Dawley (SD) rats according to standard procedure and treated with CORM-2 or inactive CORM-2 (iCORM-2), 8 mg/kg, i.v. immediately after CLP induction and euthanized after 24h or 72h (for mortality rate only). Morphological changes were investigated using both transmission electron and confocal microscopy. The levels of important TJ proteins and phosphorylation of myosin light chain (MLC) were examined using Western blotting. Cytokines, IL-1β and TNF-α were measured using ELISA kits. The overall intestinal epithelial permeability was evaluated using FD-4 as a marker.

Results

CORM-2, but not iCORM-2, significantly reduced sepsis-induced damage of intestinal mucosa (including TJ disruption), TJ protein reduction (including zonula occludens-l (ZO-1), claudin-1 and occludin), MLC phosphorylation and proinflammatory cytokine release. The overall outcomes showed that CORM-2 suppressed sepsis-induced intestinal epithelial permeability changes and reduced mortality rate of those septic rats.

Conclusions

Our data strongly suggest that CORM-2 could be a potential therapeutic reagent for sepsis by suppressing inflammation, restoring intestinal epithelial barrier and reducing mortality.  相似文献   

19.

Background & Aims

The circadian clock drives daily rhythms in behavior and physiology. A recent study suggests that intestinal permeability is also under control of the circadian clock. However, the precise mechanisms remain largely unknown. Because intestinal permeability depends on tight junction (TJ) that regulates the epithelial paracellular pathway, this study investigated whether the circadian clock regulates the expression levels of TJ proteins in the intestine.

Methods

The expression levels of TJ proteins in the large intestinal epithelium and colonic permeability were analyzed every 4, 6, or 12 hours between wild-type mice and mice with a mutation of a key clock gene Period2 (Per2; mPer2m/m). In addition, the susceptibility to dextran sodium sulfate (DSS)-induced colitis was compared between wild-type mice and mPer2m/m mice.

Results

The mRNA and protein expression levels of Occludin and Claudin-1 exhibited daily variations in the colonic epithelium in wild-type mice, whereas they were constitutively high in mPer2m/m mice. Colonic permeability in wild-type mice exhibited daily variations, which was inversely associated with the expression levels of Occludin and Claudin-1 proteins, whereas it was constitutively low in mPer2m/m mice. mPer2m/m mice were more resistant to the colonic injury induced by DSS than wild-type mice.

Conclusions

Occludin and Claudin-1 expressions in the large intestine are under the circadian control, which is associated with temporal regulation of colonic permeability and also susceptibility to colitis.  相似文献   

20.

Background and Purpose

Retinal swelling, leading to irreversible visual impairment, is an important early complication in retinal ischemia/reperfusion (I/R) injury. Diosmin, a naturally occurring flavonoid glycoside, has been shown to have antioxidative and anti-inflammatory effects against I/R injury. The present study was performed to evaluate the retinal microvascular protective effect of diosmin in a model of I/R injury.

Methods

Unilateral retinal I/R was induced by increasing intraocular pressure to 110 mm Hg for 60 min followed by reperfusion. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. Rats were evaluated for retinal functional injury by electroretinogram (ERG) just before sacrifice. Retinas were harvested for HE staining, immunohistochemistry assay, ELISA, and western blotting analysis. Evans blue (EB) extravasation was determined to assess blood–retinal barrier (BRB) disruption and the structure of tight junctions (TJ) was examined by transmission electron microscopy.

Results

Diosmin significantly ameliorated the reduction of b-wave, a-wave, and b/a ratio in ERG, alleviated retinal edema, protected the TJ structure, and reduced EB extravasation. All of these effects of diosmin were associated with increased zonular occluden-1 (ZO-1) and occludin protein expression and decreased VEGF/PEDF ratio.

Conclusions

Maintenance of TJ integrity and reduced permeability of capillaries as well as improvements in retinal edema were observed with diosmin treatment, which may contribute to preservation of retinal function. This protective effect of diosmin may be at least partly attributed to its ability to regulate the VEGF/PEDF ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号