首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood.

Methodology/Principal Findings

In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor.

Conclusions/Significance

This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.  相似文献   

2.
Mycobacterium avium uptake by human macrophages differs between the phenotypes of bacterium grown in laboratory media (extracellular growth, EG) and bacterium grown within macrophages (intracellular growth, IG). Studies in vivo have confirmed that, when spreading, pathogenic mycobacteria enter macrophages by a complement receptor 3-independent pathway, in contrast to mycobacteria uptake in vitro. M. avium, grown in macrophages (IG) for 3 or more days, invade fresh macrophages by a macropinocytosis-like mechanism, in contrast to bacteria grown in media (EG), confirmed by the inhibitory effect of wortmannin, an inhibitor of phosphoinoside-3-kinase, on the uptake of IG, but not EG, by macrophages. The IG phenotype was seen in vacuoles with lower pH than those inhabited by the EG phenotype. Incubation of macrophages with bafilomycin A1, an inhibitor of vacuole acidification, decreased the viability of intracellular IG, but not EG, phenotype, suggesting the importance of an acidic environment for the regulation of IG genes. In addition, the percentage of vacuoles that incorporate and retain LAMP-1 is smaller with EG than with IG bacteria. The formation of M. avium macropinosomes was also shown to be independent of microtubules. These data suggest that uptake of extracellular fluid is part of M. avium IG phenotype uptake by macrophages, and that the IG phenotype inhabits a slightly different vacuole than that of EG.  相似文献   

3.
Uptake of DNA by competent bacteria--a possible mechanism   总被引:4,自引:0,他引:4  
  相似文献   

4.
We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH2). The CHPNH2-QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging.  相似文献   

5.
Iron nanoparticles were produced in a radiofrequency levitation furnace and their dimensions and purity determined by scanning electron microscopy and x-ray microanalysis. Confocal microscopy revealed that these particles penetrated the leaves of Aphanorrhegma when applied to the plants as mineral water suspensions. This, the first demonstration of nanoparticle uptake by a bryophyte, opens the way to nanotoxicological studies paralleling those in higher plants. The actual penetration mechanism in both groups remains unknown.  相似文献   

6.
This paper develops a model of transport of quantum dot (QD) nanoparticles in membrane nanotubes (MNTs). It is assumed that QDs are transported inside intracellular organelles (called here nanoparticle-loaded vesicles, NLVs) that are propelled by either kinesin or dynein molecular motors while moving on microtubules (MTs). A vesicle may have both types of motors attached to it, but the motors are assumed to work in a cooperative fashion, meaning that at a given time the vesicle is moved by either kinesin or dynein motors. The motors are assumed not to work against each other, when one type of motors is pulling the vesicle, the other type is inactive. From time to time the motors may switch their roles: passive motors can become active motors and vice versa, resulting in the change of the vesicle’s direction of motion. It is further assumed that QDs can escape NLVs and become free QDs, which are then transported by diffusion. Free QDs can be internalized by NLVs. The effects of two possible types of MT orientation in MNTs are investigated: when all MTs have a uniform polarity orientation, with their plus-ends directed toward one of the cells connected by an MNT, and when MTs have a mixed polarity orientation, with half of MTs having their plus-ends directed toward one of the cells and the other half having their plus-ends directed toward the other cell. Computational results are presented for three cases. The first case is when organelles are as likely to be transported by kinesin motors as by dynein motors. The second case is when organelles are more likely to be transported by kinesin motors than by dynein motors, and the third case is when NLVs do not associate with dynein motors at all.  相似文献   

7.
The various facets of the uptake of adenosine by central nervous tissues are described. The uptake process includes the transport of nucleoside across neuronal and glial plasma membranes and its metabolism within the cell. Much of the transported adenosine is phosphorylated into adenosine nucleotides. Inhibitors of adenosine uptake increase extracellular levels of adenosine and can thus potentiate its pharmacological actions. This may be an important component in the actions of various groups of psychoactive drugs.  相似文献   

8.
Uptake and distribution of ceria nanoparticles in cucumber plants   总被引:2,自引:0,他引:2  
The presence and release of nanoparticles (NPs) into the environment have important implications for human health and the environment. A critical aspect of the risk assessment of nanoparticles is to understand the interactions of manufactured nanoparticles with plants. In this study, the uptake and distribution characteristics of two types of ceria nanoparticles with sizes of ca. 7 nm and 25 nm in cucumber plants were investigated using a radiotracer method and other techniques. With increasing concentration of the nanoparticles, concentration dependent absorption by the plant roots was noticed, but the majority of the particles only loosely adhered to the root surface. The seedlings treated with 7 nm ceria particles showed significantly higher ceria contents in both roots and shoots than those exposed to 25 nm ceria particles at all test concentrations (2, 20, and 200 mg L(-1)). Only very limited amounts of ceria nanoparticles could be transferred from the roots to shoots because the entry of nanoparticles into the roots was difficult. However, the results of tissue distributions of ceria nanoparticles in the plants and two dimensional distributions of the particles in the leaves imply that once they have entered into the vascular cylinder, ceria nanoparticles could move smoothly to the end of the vascular bundle along with water flow. To the best of our knowledge, this is the first detailed study of uptake and distribution of metal oxide nanoparticles in plants.  相似文献   

9.
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that is able to infect fibroblastic, epithelial, endothelial and hematopoietic cells. Over the past ten years, several groups have provided direct evidence that dendritic cells (DCs) fully support the HCMV lytic cycle. We previously demonstrated that the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) has a prominent role in the docking of HCMV on monocyte-derived DCs (MDDCs). The DC-SIGN/HCMV interaction was demonstrated to be a crucial and early event that substantially enhanced infection in trans, i.e., from one CMV-bearing cell to another non-infected cell (or trans-infection), and rendered susceptible cells fully permissive to HCMV infection. Nevertheless, nothing is yet known about how HCMV enters MDDCs. In this study, we demonstrated that VHL/E HCMV virions (an endothelio/dendrotropic strain) are first internalized into MDDCs by a macropinocytosis-like process in an actin- and cholesterol-dependent, but pH-independent, manner. We observed the accumulation of virions in large uncoated vesicles with endosomal features, and the virions remained as intact particles that retained infectious potential for several hours. This trans-infection property was specific to MDDCs because monocyte-derived macrophages or monocytes from the same donor were unable to allow the accumulation of and the subsequent transmission of the virus. Together, these data allowed us to delineate the early mechanisms of the internalization and entry of an endothelio/dendrotropic HCMV strain into human MDDCs and to propose that DCs can serve as a "Trojan horse" to convey CMV from entry sites to other locations that may favor the occurrence of either latency or acute infection.  相似文献   

10.
11.
Quantum dot (QD) and adenovirus (ADV) nanoparticles were surface-modified with graft copolymers that exhibited a charge reversal behavior under acidic condition. Poly(L-lysine) (PLL) was grafted with multiple biotin-PEG chains (biotin-PEG-PLL graft copolymer), and the remaining primary amine groups in the PLL backbone were postmodified using citraconic anhydride, a pH-sensitive primary amine blocker, to generate carboxylate groups. The surfaces of streptavidin-conjugated QDs were modified with citraconylated biotin-PEG-PLL copolymer, producing net negatively charged QD nanoparticles. Under acidic conditions, citraconylated amide linkages were cleaved, resulting in the recovery of positively charged amine groups with subsequent alteration of surface charge values. Intracellular delivery of QD nanoparticles was greatly enhanced in an acidic pH condition due to the surface charge reversal. The surface of avidin-conjugated adenovirus (ADV-Avi) encoding an exogenous green fluorescent protein (GFP) gene was also modified in the same fashion. The expression extent of GFP was significantly increased at more acidic pH than pH 7.4. This study demonstrates that various nanosized drug carriers, imaging agents, and viruses could be surface-engineered to enhance their cellular uptake specifically at a low pH microenvironment like solid tumor tissue.  相似文献   

12.
基于微生物生物合成纳米颗粒机制的研究进展   总被引:1,自引:0,他引:1  
纳米粒子的合成方法多种多样,包括物理法、化学法和生物合成法,其中生物合成法是以生物为基体的绿色合成方法。由于微生物易于培养、生长快、廉价易得,已成为纳米粒子生物合成法的重要生物类群。微生物和纳米材料的多样性决定了其合成机制的多样化。本文结合国内外的科研报道,着重介绍了目前纳米粒子生物合成机制,并对纳米粒子微生物合成技术未来发展趋势进行了展望。  相似文献   

13.
Chain length, size, composition, surface charge, and other properties of polymeric materials affect their recognition and uptake by cells and must be optimized to deliver polymers selectively to their target. However, it is often not possible to precisely modify selected properties without changing other parameters. To overcome these difficulties, well-defined poly(pentafluorostyrene)-based polymers are prepared that can be grafted via thiol/para-fluorine "click" reaction with 1-thio-β-D-glucose and 1-thio-β-D-galactose. Fluorescence microscopy and flow cytometry show that nanoparticles are taken up by HepG2 cells to a higher degree than the respective water-soluble polymers, and that internalization of both galactosylated homo- and nanoprecipitated block copolymers is enhanced.  相似文献   

14.
The permeability of a psychrophilic Achromobacter strain to calcium ions was examined with the radioisotope 45Ca2+. The amount of radioactivity that remained associated with the cells after exposure to 5 to 200 mM solutions of radioactive calcium was determined. The concentration of 45Ca2+ of the cells compared to that of the surrounding medium gave a ratio larger than one, and this ratio increased with decreasing ambient calcium concentration. The same results showed that the higher the external calcium concentration was, the more calcium remained with the cells. The radioactivity of the cells had the following characteristics: 1. It was rapidly lost when the cells were washed with 40Ca-solution. 2. Most of it was retained after water washings. 3. It was not affected by the presence of 2,4-dinitrophenol. 4. It was only slightly affected by temperature. 5. It increased when the cells were treated with toluene or heat and reached a maximum of 2–3 times the value of untreated cells. The same treatment brought about a smaller increase of the uptake of 22Na+. 6. Approximately 60% of the radioactivity of whole cells was associated with isolated cell envelopes.  相似文献   

15.

Background

The Duffy antigen receptor for chemokines (DARC) shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear.

Methodology/Principal Findings

We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated 125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. 125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression. 125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF) enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells.

Conclusions/Significance

These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization.  相似文献   

16.
Glycolic acid is accumulated by in vitro preparations of gill tissue from the quahog clam, Mercenaria sp., by a process indicating diffusion kinetics. Carbon-14 from labelled glycolic acid was found in the lipid fraction of the gill tissue. Evolution of labelled carbon dioxide suggests that the glycolic acid is metabolized in gill tissue.  相似文献   

17.
Uptake of endogenous cholesterol by a synthetic lipoprotein   总被引:4,自引:0,他引:4  
The addition of cholesterol-poor phospholipid liposomes to canine plasma in vivo and in vitro substantially alters the distribution of phospholipids, apoproteins, and, especially, cholesterol. In vivo, intravenously injected phospholipid liposomes remain discrete particles, which are readily distinguished from the normally occurring lipoproteins by their buoyant density and electrophoretic mobility. They acquire unesterified cholesterol from endogenous sources, thereby producing an acute rise in the concentration of this sterol in plasma. The liposomes also accumulate endogenous proteins, one of which is identified as apolipoprotein A-I. In vitro, phospholipid liposomes incubated with plasma acquire unesterified cholesterol and apolipoprotein A-I at the expense of high-density lipoproteins (HDL), the major carrier of cholesterol in normal canine plasma. In exchange, the HDL particles are enriched in phospholipids and become larger. At sufficiently high concentrations, the liposomes nearly completely deplete HDL of its unesterified cholesterol. Thus, there are generated two types of particles, both rich in apolipoprotein A-I and phospholipid, but one (modified HDL) containing mainly esterified cholesterol in its core and the other (modified liposomes) containing mainly unesterified cholesterol at its surface. It is concluded that phospholipid liposomes produce important changes in the distribution of lipids and protein in canine plasma, particularly at the expense of HDL. These changes appear to favor the mobilization of tissue cholesterol into the plasma, and may have application to atherosclerosis.  相似文献   

18.
ATP-binding cassette (ABC) transporters are integral membrane proteins that move diverse substrates across cellular membranes. ABC importers catalyse the uptake of essential nutrients from the environment, whereas ABC exporters facilitate the extrusion of various compounds, including drugs and antibiotics, from the cytoplasm. How ABC transporters couple ATP hydrolysis to the transport reaction has long remained unclear. The recent crystal structures of four complete ABC transporters suggest that a key step of the molecular mechanism is conserved in importers and exporters. Whereas binding of ATP promotes an outward-facing conformation, the release of the hydrolysis products ADP and phosphate promotes an inward-facing conformation. This basic scheme can in principle explain ATP-driven drug export and binding protein-dependent nutrient uptake.  相似文献   

19.
纳米颗粒对植物光合作用影响机制的研究   总被引:2,自引:0,他引:2  
  相似文献   

20.
Pitman MG 《Plant physiology》1969,44(10):1417-1427
Computing techniques are used to simulate the course of uptake of K+, Na+, and Cl by low-salt roots. Measurements of the fluxes of these ions in high-salt roots are used to calculate membrane permeabilities, which are then used to calculate cell uptake. In this way it is possible to test the predictive value of different models for the location of sites of salt uptake in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号