首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Masu salmon,Oncorhynchus masou masou,is one of the most valuable fishery species that has been introduced to China,though to date no studies on the genetic diversity and genetic relationship among hatchery populations has been performed with molecular markers.We undertook such a study and sampled 120 individuals from three hatchery stocks and analyzed 20 microsatellite loci.All loci were polymorphic and a total of 91 alleles were detected.A relatively low level of genetic diversity was revealed with effective number of allele of 3.1094,3.3299 and 3.1894 and expected heterozygosity of 0.6600,0.6648 and 0.6638 in the three stocks,respectively.Deviations from Hardy-Weinberg equilibrium were found due to heterozygote deficit.Accordingly,evidence of genetic bottlenecks were found in the three stocks.An individual assignment test demonstrated that 85% of individuals were correctly assigned into their original stocks.Pairwise Fst revealed that significant differentiation occurred between these three stocks.The results of the study indicated that disequilibrium of genetic structure and differentiation has occurred in all three stocks.This information collectively provides a basis for measures to avoid of loss of genetic diversity and introgression in Chinese aquaculture.  相似文献   

2.
The Korean starry flounder, Platichthys stellatus, is economically valuable coastal resident fish species. However, the annual catch of this fish has fluctuated and suffered major declines in Korea. We examined the genetic diversity and population structure for four wild populations and three hatchery stocks of Korean starry flounder to protect its genetic integrity using nine microsatellites. A group of 339 genotypes belonging to seven populations were screened. High degrees of polymorphism at the microsatellite loci were observed within both the wild and hatchery populations. Compared to the wild populations, genetic changes, including reduced genetic diversity and highly significant differentiation, have occurred in cultured stocks. Significant population differentiation was also observed in wild starry flounder populations. Similar degrees of inbreeding and significant Hardy–Weinberg equilibrium deviations were detected in both the wild and the hatchery populations. The genetic connectivity pattern identified four distinct metapopulations of starry flounder in Korea by clustering in the phylogenetic tree, Bayesian analyses, molecular variance analysis, PCA and multidimensional scaling analysis. A pattern of isolation-by-distance was not significant. This genetic differentiation may be the result of the co-effects of various factors, such as historic dispersal, local environment or anthropogenic activities. These results provide useful information for the genetic monitoring of P. stellatus hatchery stocks, for the genetic improvement of this species by selective breeding and for designing suitable management guidelines for the conservation of this species.  相似文献   

3.
The Pacific oyster, Crassostrea gigas, is the most important and valuable commercial fishery species in Korea. Its farming started 20 years ago and is still rapid expansion in Korea. In this study, to maintain the genetic diversity of this valuable marine resource, possible genetic similarity and differences between the wild population and hatchery population in Tongyeong, Korea were accessed using multiplex assays with nine highly polymorphic microsatellite loci. A total of 250 different alleles were found over all loci. Despite a long history of hatchery practices, very high levels of polymorphism (mean alleles = 22.89 and mean heterozygosity = 0.92) were detected between the two populations. No statistically significant reductions were found in heterozygosity or allelic diversity in the hatchery population compared with the wild population. However, significant genetic heterogeneity was found between two populations. These results provide no evidence to show that hatchery practice of Pacific oyster in Korea has significantly affected the genetic variability of the hatchery stock. Although further studies are needed for comprehensive determinations of the hatchery and wild populations with increased number of Pacific oyster sample collections, information on the genetic variation and differentiation obtained in this study can be applied for genetic monitoring of aquaculture stocks, genetic improvement by selective breeding and designing of more efficient conservation management guidelines for these valuable genetic materials.  相似文献   

4.
唐鱼(Tanichthys albonubes)是为数不多的几种原产中国的世界性观赏鱼类之一。自2003年以来, 多个唐鱼野生种群相继被发现, 其濒危状态和等级由野外灭绝降为极危。为研究唐鱼养殖种群与广州附近野生种群之间的遗传关系, 本文分析了唐鱼3个代表性养殖种群和4个野生种群, 共计186个样本的Cyt b基因、2个核基因(ENC1RAG1)以及13个微卫星位点数据。基于K2P模型的遗传距离结果显示, 唐鱼野生种群间的遗传距离在0.005-0.015之间, 养殖种群间的遗传距离为0.001-0.009。系统发育分析表明, 唐鱼养殖种群包含4个单倍型谱系分支, 其中2个分别与广州附近2个野生种群聚在一起, 另外2个分别独立成支。单倍型网络亲缘关系分析显示, 清远种群只有1个单倍型且与芳村养殖种群共享, 芳村养殖种群拥有最多的单倍型。基于微卫星数据的STRUCTURE分析表明, 所有种群最佳分簇数为2, 清远种群与养殖种群聚为一簇, 良口和石门种群聚为另一簇。主成分分析结果显示, 养殖种群高度重叠并能与野生种群分开, 清远种群与养殖种群存在部分重叠。利用IMa3的基因流分析表明, 存在清远种群至芳村养殖种群的单向基因流。综合本文结果, 作者认为唐鱼养殖种群应起源于广州附近多个野生种群。清远种群来源于养殖种群中的芳村养殖种群。建议在未来唐鱼的保护策略中, 应禁止不规范的放流活动并且禁止将不同野生种群补充至养殖种群, 同时加强唐鱼养殖种群和野生种群的遗传资源管理和持续监测。  相似文献   

5.
The expression of colour marks (parr marks, red and black spots) of the amago salmon Oncorhynchus masou ishikawae was compared with microsatellite information, to see the effects of stocking hatchery fish on the phenotype of indigenous populations, which face extinction through extensive stocking. A Bayesian-based assignment test suggested introgression of two exotic clusters into one indigenous cluster in the stocked area and its vicinity. The number of parr marks was significantly higher in one hatchery-origin population, which exclusively comprised one exotic cluster. An increased number of red spots in stocked hatchery fish was probably a consequence of hatchery feeding conditions. The number of black spots was correlated with body size in many populations, except for hatchery and heavily introgressed populations. Coefficients of correlation and regression of black spots with body size, which were largest in indigenous populations, decreased with an increase of introgression by hatchery fish. As indigenous populations have low genetic diversity with high relatedness, it was inferred that the height of correlation and regression coefficients in black spots is caused by high genetic homogeneity and fixation of alleles in loci related to the increase of black spots, both of which might have collapsed with introgression by hatchery fish. These results suggest the possibility that introgression by stocked fish causes a change of phenotype in indigenous populations.  相似文献   

6.
J. Geist    M. Kolahsa    B. Gum    R. Kuehn 《Journal of fish biology》2009,75(5):1063-1078
European huchen Hucho hucho (L.) is an endangered flagship species, which is endemic to the Danube drainage in central Europe. To date, no genetic information has been available as a basis for ongoing conservation and breeding programmes for the species. It is suspected that most populations in the wild share one common gene pool and that they exclusively depend on stocking with hatchery fish. In this study, highly variable microsatellite markers were established and the genetic diversity and differentiation from four important hatchery-reared stocks were compared with that of eight H. hucho populations sampled in the wild. Overall, eight genetic clusters with a moderate to very great degree of genetic differentiation and high assignment rates were identified. Each cluster contained individuals from two to 10 different populations and 9–100% of specimens from hatchery stocks. It is proposed that genetic cluster-based management in the conservation of European huchen is advantageous compared with the consideration of single local populations. A combined approach of maintaining the evolutionary potential of wild populations and genetically variable hatchery stocks can maximize the conservation of the species' evolutionary potential.  相似文献   

7.
Genetic variations within and between nine hatchery stocks and seven natural populations of abalone including Ezo-abalone (Haliotis discus hannai) and Kuro-abalone (H. d. discus) were assayed with nine microsatellite markers. Marked reductions of genetic variability in the hatchery stocks were recognized in the allelic diversity and mean heterozygosity compared with the natural populations. Thirteen of 16 significant HWE deviations in hatchery stocks revealed heterozygotes excess, while all natural populations did not show such a tendency. Highly significant F ST values were observed for all cases between the hatchery stocks, and between the hatchery stocks and natural populations. Genetic distance (D A) between each hatchery stock and the geographically proximal population (mean ± SD, 0.108 ± 0.035) were similar to those estimated for between the natural Ezo-abalone and Kuro-abalone (0.101 ± 0.021). The self-assignment test, which allocated individuals to their own stock with a high success rate, provided evidence of solid genetic differences among the nine hatchery stocks. These results suggests that the allelic composition and diversity in the natural populations was not necessarily reflected in the hatchery stocks owing to population bottleneck and genetic drift through seedling process, and thus the seedling and stocking practice of these hatchery stocks should take much notice of the results to conserve the genetic diversity of natural populations.  相似文献   

8.
The flatfish Solea senegalensis represents an important resource in modern mariculture and is largely raised in South Spain and Portugal. Substantial progress has been achieved in its domestication, though suitable reproduction and zootechnical conditions still remain unknown. Difficulties to obtain breeders from wild lead many companies to set up broodstocks with first generation (G1) progeny without genetic guidelines. To study the genetic processes underlying the early stage of domestication of this species, the genetic structure of four representative broodstocks from Southern Spain has been assessed by means of eight microsatellite loci . Data revealed a substantial reduction in levels of genetic variability on just one generation in stocks totally or partially composed of G1 individuals when compared with those solely integrated by individuals from wild. The genetic relatedness within the four stocks has been established, having detected close relationships between individuals from cultured origin, thus suggesting that the loss of variability is apparently due to setting up broodstocks by blind selecting of family related G1 individuals. The high proportion of siblings in these stocks can have negative consequences in future generations due to inbreeding effects. The relationships between the four broodstocks were traced, having found a common origin between two of them, which come from the same donor hatchery, thus enhancing the homogenization of the existent resources for S. senegalensis among the various stocks. This finding alerts about the risks in exchanging fish between hatcheries without knowing their genetic origin. From this study, the use of microsatellites is strongly recommended to control the genetic composition of S. senegalensis broodstocks, aimed to maintain standards of genetic health and improve their reproduction capacity, which is a key issue in the domestication process.  相似文献   

9.
The history of brown trout Salmo trutta L. stocking has long tradition in the European Union and other countries. Hundreds of hatchery facilities on continent have artificial broodstocks used for enhancement of neighbouring and also geographically far river basins. These practices have substantial effect on wild brown trout populations. To illuminate this phenomenon, eleven hatchery stocks and wild populations from northern Poland and Carpathian region were analysed using 13 microsatellite markers. Obtained results revealed high genetic diversity between studied stocks and clear differentiation between northern and southern populations and hybridization between these two major clads. As a recommendation, the principle of treating regions as metapopulations should be applied, which, in the case of Poland, means using the division of the northern and southern genetic lines that were revealed in the present study.  相似文献   

10.
Masu salmon, Oncorhynchus masou masou, is an economically important fish species in the Far East and occurs in two life history forms: sea-run migratory (anadromous) and freshwater resident (non-anadromous). The non-anadromous form has recently become a popular freshwater food and game fish during a well-known Korean winter festival. However, the genetic background of this species remains largely unknown, partly due to a lack of molecular genetic markers. In this study, we developed new polymorphic microsatellite markers for masu salmon using next-generation sequencing technology. From 40 primer sets, 11 primer sets (27.5% of the primer sets selected) were successfully amplified with 106 alleles (range 2–9) in 64 individuals from different populations: two wild and one hatchery. Observed and expected heterozygosities ranged from 0.304 to 0.947 and 0.278 to 0.865, respectively. Significant departures from the Hardy–Weinberg equilibrium were detected for four markers (OMM11, OMM17, OMM28, and OMM33) in a single population. All pair-wise FST values were highly significant between the wild and hatchery populations (range 0.084–0.183, P < 0.0001). We identified a set of robust microsatellite markers that worked well even in formalin-fixed samples, which will be suitable for biogeographical and population structure analyses of the masu salmon.  相似文献   

11.
Relationships of genetic diversity at microsatellite loci and quantitative traits were examined in hatchery-produced populations of Japanese flounder using a relatively straightforward experiment. Five hatchery populations produced by wild-caught and domesticated broodstocks were used to examine the effects of different levels (one to three generations) of domestication on the genetic characteristics of hatchery populations. Allelic richness at seven microsatellite loci in all hatchery populations was lower than that in a wild population. Genetic variation measured by allelic richness and heterozygosity tended to decrease with an increase in generations of domestication. In addition, the degree of genetic differentiation from a wild population increased with an increase in generations of domestication. Significant differences in three morphometric traits (dorsal and anal fin ray counts and vertebral counts) and three physiological traits (high temperature, salinity and formalin tolerance) were observed among the hatchery populations. The degree of phenotypic difference among populations was larger in morphometric traits than in physiological traits. The divergence pattern of some quantitative traits was similar to that observed at microsatellite loci, suggesting that domestication causes the decrease of genetic variation and the increase of genetic differentiation for some quantitative traits concomitantly with those for microsatellite loci. Significant positive correlation was observed between F ST and the degree of phenotypic difference in the three morphometric traits and formalin tolerance, indicating that genetic variation at microsatellite loci predicts the degree of phenotypic divergence in some quantitative traits.  相似文献   

12.
运用RAPD技术对黑颈长尾雉圈养种群的遗传多样性进行了分析。从50条随机引物中筛选出14条引物,对24个个体的基因组DNA进行了PCR扩增,从检测出的119个位点中有98个多态位点,占总位点的82.35%,标记的分子量大小范围是0.2~3kb。24个个体间的遗传距离幅度0.1597~0.4874,平均是0.2810;用软件NTsys2.10e构建了24个个体相互关系的分支图,24个个体可分为3个类群。实验表明:黑颈长尾雉圈养种群的遗传多样性水平较高,圈养种群内遗传差异性较大。  相似文献   

13.
There has been very little effort to understand genetic divergence between wild and hatchery populations of masu salmon (Oncorhynchus masou). In this study, we used mitochondrial (mt) NADH dehydrogenase subunit 5 gene (ND5) and six polymorphic nuclear microsatellite DNA loci to compare the genetic variability in three hatchery broodstocks of masu salmon with the variability in eight putative wild masu populations sampled in five rivers including one known source river for the hatchery broodstocks. Both ND5 and microsatellites showed no significant genetic divergence (based on FST estimates) between four annual collections from the source river population, suggesting no change in genetic diversity over this time period. The FST estimates, an analysis of molecular variance (AMOVA), and a neighbor-joining tree using both DNA markers suggested significant differentiation between the three hatchery and all eight putative wild populations. We conclude that genetic diversity of hatchery populations are low relative to putative wild populations of masu salmon, and we discuss the implications for conservation and fisheries management in Hokkaido.  相似文献   

14.
Patterns of genetic diversity and differentiation among five wild and four hatchery populations of Atlantic salmon in the Baltic Sea were assessed based on eight assumedly neutral microsatellite loci and six gene-associated markers, including four expressed sequence tag (EST) linked and two major histocompatibility complex (MHC) linked tandem repeat markers (micro- and mini-satellites). The coalescent simulations based on the method of Beaumont and Nichols (1996, Proc. R. Soc. Lond. Ser. B – Biol. Sci., 263, 1619–1626) indicated that two loci (MHCIIα and Ssa171, with the lowest and highest overall FST estimates, respectively) exhibited significant departures (P<0.05) from the neutral expectations. Another coalescent-based test for selective neutrality (Vitalis et al. 2001, Genetics, 158, 1811–1823) further supported the outlier status of the Ssa171 microsatellite locus but not of the MHCIIα linked minisatellite. In addition, actin related protein linked microsatellite locus was identified with this test as an outlier in six pairwise population comparisons. All genetic diversity estimates revealed more genetic variation in hatchery stocks than in the small wild salmon populations from the Gulf of Finland. However, the wild populations possessed alleles at gene-associated markers (e.g. MHCI and IGF) not found in the hatchery stocks, which together with moderate genetic differentiation and distinctive environmental conditions justifies the special conservation measures for the last remaining native salmon populations in the Gulf of Finland.  相似文献   

15.
Mitochondrial DNA diversity of 13 wild Silurus glanis populations (covering the entire range of the species) and eight hatchery populations was investigated. PCR-RFLP analysis of four regions of mitochondrial DNA (cytochrome b, control region, ND-5/6) was used. Nineteen haplotypes were found. Thirteen of them were private. The proportion of total genetic diversity attributable to population differentiation was almost 80%. Despite the existence of significant differentiation between populations for mtDNA variation, no consistent pattern of geographic structuring was revealed and nucleotide divergence among S. glanis populations was low. These phenomena are discussed with regard to the impact of glaciation events. The domesticated stocks show less genetic diversity than natural ones, possibly due to their mode of management. Analysis of three European catfish species S. glanis, S. aristotelis and Silurus triostegus (sampled in the Euphrates river) revealed several endonucleases which produced restriction phenotypes diagnostic for the three species.  相似文献   

16.
This study investigates the patterns of genetic diversity detected in allozymes, mtDNA, and microsatellites, in order to assess their relative efficacy to differentiate sympatric landlocked salmon populations and to estimate changes in genetic diversity between wild and first-generation hatchery fish. Overall, the three genetic markers indicated a genetic differentiation between two sympatric populations of Lake Saint-Jean, Québec. MtDNA and microsatellites also showed significant differences between wild and first-generation hatchery fish originating from the same river. Allozyme analysis was the most limited approach due to the low genetic diversity detected and the necessity to kill specimens. Although low polymorphism was found in mtDNA, it was the most discriminant marker between wild populations. Microsatellite analysis appears to be a promising approach due to its high sensitivity in differentiating wild populations, in detecting changes in allele composition between wild and first-generation hatchery fish and its potential for increased resolution by augmenting the number of polymorphic loci. Given the benefits and disadvantages of the three methods, the combination of mtDNA and microsatellite analyses will best address our research objectives.  相似文献   

17.
The importance of genetic evaluations in aquaculture programmes has been increased significantly not only to improve effectiveness of hatchery production but also to maintain genetic diversity. In the present study, wild and captive populations of a commercially important neotropical freshwater fish, Brycon cephalus (Amazonian matrinchã), were analyzed in order to evaluate the levels of genetic diversity in a breeding programme at a Brazilian research institute of tropical fish. Random Amplified Polymorphic DNA fingerprinting was used to access the genetic variability of a wild stock from the Amazon River and of three captive stocks that correspond to consecutive generations from the fishery culture. Although farmed stocks showed considerably lower genetic variation than the wild population, a significantly higher level of polymorphism was detected in the third hatchery generation. The results seem to reflect a common breeding practice on several hatchery fish programmes that use a small number of parents as broodstocks, obtaining reproductive success with few non‐identified mating couples. The obtained data were useful for discussing suitable strategies for the genetic management and biodiversity conservation of this species.  相似文献   

18.
The population structure of the black rockfish, Sebastes inermis (Sebastidae), was estimated using 10 microsatellite loci developed for S. schlegeli on samples of 174 individuals collected from three wild and three hatchery populations in Korea. Reduced genetic variation was detected in hatchery strains [overall number of alleles (N(A)) = 8.07; allelic richness (A(R)) = 7.37; observed heterozygosity (H(O)) = 0.641] compared with the wild samples (overall N(A) = 8.43; A(R) = 7.83; H(O) = 0.670), but the difference was not significant. Genetic differentiation among the populations was significant (overall F(ST) = 0.0237, P < 0.05). Pairwise F(ST) tests, neighbor-joining tree, and principal component analyses showed significant genetic heterogeneity among the hatchery strains and between wild and hatchery strains, but not among the wild populations, indicating high levels of gene flow along the southern coast of Korea, even though the black rockfish is a benthic, non-migratory marine species. Genetic differentiation among the hatchery strains could reflect genetic drift due to intensive breeding practices. Thus, in the interests of optimal resource management, genetic variation should be monitored and inbreeding controlled within stocks in commercial breeding programs. Information on genetic population structure based on cross-species microsatellite markers can aid in the proper management of S. inermis populations.  相似文献   

19.
Red sea cucumber Stichopus japonicus is the most important and valuable commercial sea cucumber species in Korea. Its farming and stock enhancement started in the early 2000s and is still rapid expansion in Korea. Therefore, the analyses of genetic status of wild and hatchery populations are necessary to maintain the genetic diversity of this valuable marine resource. In this study, possible genetic similarity and differences between the wild population and hatchery population in Jeju, Korea were accessed using multiplex assays with eight highly polymorphic microsatellite loci. High levels of polymorphism were observed between the two populations. A total of 93 different alleles were found. Although a considerable loss of unique alleles and relatively high inbreeding coefficient value were observed in the hatchery samples, no statistically significant reductions were found in heterozygosity or allelic diversity in the hatchery population, compared with the wild population. However, significant genetic heterogeneity was found between two populations. These results suggest that genetic drift has probably promoted differentiation between populations, and stocking intensity in wild populations may correlate with loss of genetic integrity. Therefore, the sustainable exploitation plans of the fishery resource should be developed by applying basic genetic principles combined with molecular monitoring. This genetic baseline information of Korean red sea cucumber has important implications for designing of genetically sustainable restocking programs and more efficient conservation management guidelines for these valuable genetic materials.  相似文献   

20.
A drastic decline has occurred in the size of the Uganda elephant population in the last 40 years, exacerbated by two main factors; an increase in the size of the human population and poaching for ivory. One of the attendant consequences of such a decline is a reduction in the amount of genetic diversity in the surviving populations due to increased effects of random genetic drift. Information about the amount of genetic variation within and between the remaining populations is vital for their future conservation and management. The genetic structure of the African elephant in Uganda was examined using nucleotide variation of mitochondrial control region sequences and four nuclear microsatellite loci in 72 individuals from three localities. Eleven mitochondrial DNA (mtDNA) haplotypes were observed, nine of which were geographically localized. We found significant genetic differentiation between the three populations at the mitochondrial locus while three out of the four microsatellite loci differentiated KV and QE, one locus differentiated KV and MF and no loci differentiated MF and QE. Expected heterozygosity at the four loci varied between 0.51 and 0.84 while nucleotide diversity at the mitochondrial locus was 1.4%. Incongruent patterns of genetic variation within and between populations were revealed by the two genetic systems, and we have explained these in terms of the differences in the effective population sizes of the two genomes and male-biased gene flow between populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号