首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a novel technology for multicolor gene and chromosome detection as well as for three-dimensional (3D) DNA imaging by multiphoton excitation of multiple FISH fluorophores and DNA stains. Near infrared femtosecond laser pulses at 770 nm were used to simultaneously excite the visible fluorescence of a wide range of FISH fluorophores, such as FITC, DAC, Cy3, Cy5, Cy5.5, rhodamine, spectrum aqua, spectrum green, spectrum orange, Jenfluor, and Texas red as well as of DNA/chromosome stains, for example Hoechst 33342, DAPI, SYBR green, propidium iodide, ethidium homodimer, and Giemsa. In addition to the advantage of using only one excitation wavelength for a variety of fluorophores, multiphoton excitation provided the intrinsic possibility of 3D fluorescence imaging. The technology has been used in human genetics for the diagnosis of numerical chromosome aberrations and microdeletions. In particular, multicolor 3D images of the intranuclear localization of FISH-labeled chromosome territories in interphase nuclei of amniotic fluid cells have been obtained. Using the high light penetration depth at 770 nm, optical sectioning of Hoechst 33342-labeled DNA within living culture cells and within tissue of living tumor-bearing mice was performed.  相似文献   

2.
Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-''light-sheet'', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in) to quickly analyse a calibration sample to define and use such a virtual light-sheet. In addition, the plug-in is easily usable on almost any existing 2D super-resolution instrumentation. This optical sectioning of super-resolution images is achieved by applying well-characterised width and amplitude thresholds to diffraction-limited spots that can be used to tune the thickness of the virtual light-sheet. This allows qualitative and quantitative imaging improvements: by rejecting out-of-focus fluorophores, the super-resolution image gains contrast and local features may be revealed; by retaining only fluorophores close to the focal plane, virtual-''light-sheet'' single-molecule localisation microscopy improves the probability that all emitting fluorophores will be detected, fitted and quantitatively evaluated.  相似文献   

3.
In this study we demonstrate a new noninvasive imaging method to monitor freezing processes in biological samples and to investigate life in the frozen state. It combines a laser scanning microscope with a computer-controlled cryostage. Nearinfrared (NIR) femtosecond laser pulses evoke the fluorescence of endogenous fluorophores and fluorescent labels due to multiphoton absorption.The inherent optical nonlinearity of multiphoton absorption allows 3D fluorescence imaging for optical tomography of frozen biological material in-situ. As an example for functional imaging we use fluorescence lifetime imaging (FLIM) to create images with chemical and physical contrast.  相似文献   

4.
Raster image correlation spectroscopy (RICS) is a noninvasive technique to detect and quantify events in a live cell, including concentration of molecules and diffusion coefficients of molecules; in addition, by measuring changes in diffusion coefficients, RICS can indirectly detect binding. Any specimen containing fluorophores that can be imaged with a laser scanning microscope can be analyzed using RICS. There are other techniques to measure diffusion coefficients and binding; however, RICS fills a unique niche. It provides spatial information and can be performed in live cells using a conventional confocal microscope. It can measure a range of diffusion coefficients that is not accessible with any other single optical correlation-based technique. In this article we describe a protocol to obtain raster scanned images with an Olympus FluoView FV1000 confocal laser scanning microscope using Olympus FluoView software to acquire data and SimFCS software to perform RICS analysis. Each RICS measurement takes several minutes. The entire procedure can be completed in ~2 h. This procedure includes focal volume calibration using a solution of fluorophores with a known diffusion coefficient and measurement of the diffusion coefficients of cytosolic enhanced green fluorescent protein (EGFP) and EGFP-paxillin.  相似文献   

5.
Precise three-dimensional (3D) mapping of a large number of gene expression patterns, neuronal types and connections to an anatomical reference helps us to understand the vertebrate brain and its development. We developed the Virtual Brain Explorer (ViBE-Z), a software that automatically maps gene expression data with cellular resolution to a 3D standard larval zebrafish (Danio rerio) brain. ViBE-Z enhances the data quality through fusion and attenuation correction of multiple confocal microscope stacks per specimen and uses a fluorescent stain of cell nuclei for image registration. It automatically detects 14 predefined anatomical landmarks for aligning new data with the reference brain. ViBE-Z performs colocalization analysis in expression databases for anatomical domains or subdomains defined by any specific pattern; here we demonstrate its utility for mapping neurons of the dopaminergic system. The ViBE-Z database, atlas and software are provided via a web interface.  相似文献   

6.
Yan L  Rueden CT  White JG  Eliceiri KW 《BioTechniques》2006,41(3):249, 251, 253 passim
Live cell imaging has been greatly advanced by the recent development of new fluorescence microscopy-based methods such as multiphoton laser-scanning microscopy, which can noninvasively image deep into live specimens and generate images of extrinsic and intrinsic signals. Of recent interest has been the development of techniques that can harness properties of fluorescence, other than intensity, such as the emission spectrum and excited state lifetime of a fluorophore. Spectra can be used to discriminate between fluorophores, and lifetime can be used to report on the microenvironment of fluorophores. We describe a novel technique-combined spectral and lifetime imaging-which combines the benefits of multiphoton microscopy, spectral discrimination, and lifetime analysis and allows for the simultaneous collection of all three dimensions of data along with spatial and temporal information.  相似文献   

7.
While the rapid development of personal computers and high-throughput recording systems for circadian rhythms allow chronobiologists to produce huge amounts of data, the software to analyze them often lags behind. Here, we announce newly developed chronobiology software that is easy to use, compatible with many different systems, and freely available. Our system can perform the most frequently used analyses: actogram drawing, periodogram analysis, and waveform analysis. The software is distributed as a pure Java plug-in for ImageJ and so works on the 3 main operating systems: Linux, Macintosh, and Windows. We believe that this free software raises the speed of data analyses and makes studying chronobiology accessible to newcomers.  相似文献   

8.
We describe a localization microscopy analysis method that is able to extract results in live cells using standard fluorescent proteins and xenon arc lamp illumination. Our Bayesian analysis of the blinking and bleaching (3B analysis) method models the entire dataset simultaneously as being generated by a number of fluorophores that may or may not be emitting light at any given time. The resulting technique allows many overlapping fluorophores in each frame and unifies the analysis of the localization from blinking and bleaching events. By modeling the entire dataset, we were able to use each reappearance of a fluorophore to improve the localization accuracy. The high performance of this technique allowed us to reveal the nanoscale dynamics of podosome formation and dissociation throughout an entire cell with a resolution of 50 nm on a 4-s timescale.  相似文献   

9.
Multiphoton laser-scanning microscopy is still developing rapidly, both technologically and by broadening its range of application. Technical progress has been made in the optimization of fluorophores, in increasing the imaging depth of multiphoton microscopy, and in microscope miniaturization. These advances further facilitate the study of neuronal structure and signaling in living and even in behaving animals, in particular in combination with the expression of fluorescent proteins. In addition, nonlinear optical contrast mechanisms other than multiphoton excitation of fluorescence are being explored.  相似文献   

10.
This protocol presents the peptide incorporation of environment-sensitive fluorophores derived from the dimethylaminophthalimide family. The procedure utilizes anhydride precursors of 4-dimethylaminophthalimide (4-DMAP) or 6-dimethylaminonaphthalimide (6-DMN), whose syntheses are described in a related protocol from these authors. In this protocol, the fluorophores are directly incorporated after solid-phase peptide synthesis (SPPS) via on-resin derivatization of peptides prepared using commercially available diamino acids, which are Alloc-protected on the side-chain amino group. The time required to complete the procedure depends on the size and number of peptides targeted. As an alternative to this approach, the corresponding fluorescent amino acids can be obtained in an Fmoc-protected form for convenient use as building blocks in SPPS. This option is described in a related protocol by these authors.  相似文献   

11.
A solid tumor is an organ composed of cancer and host cells embedded in an extracellular matrix and nourished by blood vessels. A prerequisite to understanding tumor pathophysiology is the ability to distinguish and monitor each component in dynamic studies. Standard fluorophores hamper simultaneous intravital imaging of these components. Here, we used multiphoton microscopy techniques and transgenic mice that expressed green fluorescent protein, and combined them with the use of quantum dot preparations. We show that these fluorescent semiconductor nanocrystals can be customized to concurrently image and differentiate tumor vessels from both the perivascular cells and the matrix. Moreover, we used them to measure the ability of particles of different sizes to access the tumor. Finally, we successfully monitored the recruitment of quantum dot-labeled bone marrow-derived precursor cells to the tumor vasculature. These examples show the versatility of quantum dots for studying tumor pathophysiology and creating avenues for treatment.  相似文献   

12.
Chronic inflammation in various organs, such as the brain, implies that different subpopulations of immune cells interact with the cells of the target organ. To monitor this cellular communication both morphologically and functionally, the ability to visualize more than two colors in deep tissue is indispensable. Here, we demonstrate the pronounced power of optical parametric oscillator (OPO)-based two-photon laser scanning microscopy for dynamic intravital imaging in hardly accessible organs of the central nervous and of the immune system, with particular relevance for long-term investigations of pathological mechanisms (e.g., chronic neuroinflammation) necessitating the use of fluorescent proteins. Expanding the wavelength excitation farther to the infrared overcomes the current limitations of standard Titanium:Sapphire laser excitation, leading to 1), simultaneous imaging of fluorophores with largely different excitation and emission spectra (e.g., GFP-derivatives and RFP-derivatives); and 2), higher penetration depths in tissue (up to 80%) at higher resolution and with reduced photobleaching and phototoxicity. This tool opens up new opportunities for deep-tissue imaging and will have a tremendous impact on the choice of protein fluorophores for intravital applications in bioscience and biomedicine, as we demonstrate in this work.  相似文献   

13.
Real-time multi-wavelength fluorescence imaging of living cells   总被引:4,自引:0,他引:4  
S J Morris 《BioTechniques》1990,8(3):296-308
We describe a new real-time fluorescence video microscope design for capturing intensified images of cells containing dual wavelength "ratio" dyes or multiple dyes. The microscope will perform real-time capture of two separate fluorescence emission images simultaneously, improving the time resolution of spatial distribution of fluorescence to video frame rates (30 frames/s or faster). Each emission wavelength is imaged simultaneously by one of two cameras, then digitized, background corrected and appropriately combined at standard video frame rates to be stored at high resolution on tape or digital video disk for further off-line analysis. Use of low noise, high sensitivity image intensifiers, coupled to CCD cameras produce stable, high contrast images using ultra low light levels with little persistence or bloom. The design has no moving parts in its optical train, which overcomes a number of technical difficulties encountered in the present filter wheel designs for multiple imaging. Coupled to compatible image processing software utilizing PC-AT computers, the new design can be built for a significantly lower cost than many presently available commercial machines. The system is ideal for ratio imaging applications; the software can calculate the ratio of fluorescence intensities pixel by pixel and provide the information to generate false-color images of the intensity data as well as other calculations based on the two images. Thus, it provides a powerful, inexpensive tool for studying the real-time kinetics of changes in living cells. Examples are presented for the kinetics of rapidly changing intracellular calcium detected by the calcium indicator probe indo-1 and the redistribution kinetics of multiple vital dyes placed in cells undergoing cell fusion.  相似文献   

14.
It is increasingly important in life sciences that many cell-scale and tissue-scale measurements are quantified from confocal microscope images. However, extracting and analyzing large-scale confocal image data sets represents a major bottleneck for researchers. To aid this process, CellSeT software has been developed, which utilizes tissue-scale structure to help segment individual cells. We provide examples of how the CellSeT software can be used to quantify fluorescence of hormone-responsive nuclear reporters, determine membrane protein polarity, extract cell and tissue geometry for use in later modeling, and take many additional biologically relevant measures using an extensible plug-in toolset. Application of CellSeT promises to remove subjectivity from the resulting data sets and facilitate higher-throughput, quantitative approaches to plant cell research.  相似文献   

15.
Scanning microphotolysis (SCAMP) is a combination of fluorescence microphotolysis and confocal laser scanning microscopy. A laser scanning microscope is equipped with an optical switch able to modulate the power or/and wavelength of the laser beam in less than a microsecond while a dedicated computer program is employed to precisely coordinate scanning process and laser beam modulation. By these means it becomes possible to vary the power or/and wavelength of the laser beam during scanning at a precision of one resolution element. Patterns of almost arbitrary design can be written into the object by photolysis, e.g., photobleaching or photoactivation. The dissipation of the photolysis pattern by diffusion or other types of molecular transport can be followed at confocal resolution and used to characterize the transport process. SCAMP can be employed in conjunction with single-photon or multiphoton excitation. Furthermore, it can be easily installed on virtually any confocal laser scanning microscope. We summarize at first the conceptual and practical basis of SCAMP. Then, two novel applications are discussed: (i) measurements of translational diffusion coefficients in truly three-dimensional systems at diffraction-limited resolution, and (ii) optical recording of single transporters in membrane patches.  相似文献   

16.
With tunable excitation light, multiphoton microscopy is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here, we experimentally demonstrate a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2‐color third‐harmonic generation imaging excited by a 2‐color soliton source with tunable wavelength separation. Our technique is self‐referenced, eliminating potential measurement error when 1‐color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2‐color imaging, may open up opportunity for simultaneous imaging of 2 different axial planes.   相似文献   

17.
Lubeck E  Cai L 《Nature methods》2012,9(7):743-748
Fluorescence microscopy is a powerful quantitative tool for exploring regulatory networks in single cells. However, the number of molecular species that can be measured simultaneously is limited by the spectral overlap between fluorophores. Here we demonstrate a simple but general strategy to drastically increase the capacity for multiplex detection of molecules in single cells by using optical super-resolution microscopy (SRM) and combinatorial labeling. As a proof of principle, we labeled mRNAs with unique combinations of fluorophores using fluorescence in situ hybridization (FISH), and resolved the sequences and combinations of fluorophores with SRM. We measured mRNA levels of 32 genes simultaneously in single Saccharomyces cerevisiae cells. These experiments demonstrate that combinatorial labeling and super-resolution imaging of single cells is a natural approach to bring systems biology into single cells.  相似文献   

18.
We demonstrate three-dimensional (3D) super-resolution imaging of stochastically switched fluorophores distributed across whole cells. By evaluating the higher moments of the diffraction spot provided by a 4Pi detection scheme, single markers can be simultaneously localized with <10 nm precision in three dimensions in a layer of 650 nm thickness at an arbitrarily selected depth in the sample. By splitting the fluorescence light into orthogonal polarization states, our 4Pi setup also facilitates the 3D nanoscopy of multiple fluorophores. Offering a combination of multicolor recording, nanoscale resolution and extended axial depth, our method substantially advances the noninvasive 3D imaging of cells and of other transparent materials.  相似文献   

19.
Multiphoton action cross‐sections are the prerequisite for excitation light selection. At the 1700‐nm window suitable for deep‐tissue imaging, wavelength‐dependent 3‐photon action cross‐sections ησ3 for RFPs are unknown, preventing wavelength selection. Here we demonstrate: (1) ex vivo measurement of wavelength‐dependent ησ3 for purified RFPs; (2) a multiphoton imaging guided measurement system for in vivo measurement; and (3) in vivo measurement of wavelength‐dependent ησ3 in RFP labeled cells. These fundamental results will provide guidelines for excitation wavelength selection for 3‐photon fluorescence imaging of RFPs at the 1700‐nm window, and augment the existing database of multiphoton action cross‐sections for fluorophores.   相似文献   

20.
Hyperspectral imaging: a novel approach for microscopic analysis   总被引:3,自引:0,他引:3  
BACKGROUND: The usefulness of the light microscope has been dramatically enhanced by recent developments in hardware and software. However, current technologies lack the ability to capture and analyze a high-resolution image representing a broad diversity of spectral signatures in a single-pass view. We show that hyperspectral imaging offers such a technology. METHODS AND RESULTS We developed a prototype hyperspectral imaging microscope capable of collecting the complete emission spectrum from a microscope slide. A standard epifluorescence microscope was optically coupled to an imaging spectrograph, with output recorded by a CCD camera. Software was developed for image acquisition and computer display of resultant X--Y images with spectral information. Individual images were captured representing Y-wavelength planes, with the stage successively moved in the X direction, allowing an image cube to be constructed from the compilation of generated scan files. This prototype instrument was tested with samples relevant to cytogenetic, histologic, cell fusion, microarray scanning, and materials science applications. CONCLUSIONS: Hyperspectral imaging microscopy permits the capture and identification of different spectral signatures present in an optical field during a single-pass evaluation, including molecules with overlapping but distinct emission spectra. This instrument can reduce dependence on custom optical filters and, in future imaging applications, should facilitate the use of new fluorophores or the simultaneous use of similar fluorophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号