首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
S Basu  H E Varmus 《Journal of virology》1990,64(11):5617-5625
The integration protein (IN) of Moloney murine leukemia virus (MuLV), purified after being produced in yeast cells, has been analyzed for its ability to bind its putative viral substrates, the att sites. An electrophoretic mobility shift assay revealed that the Moloney MuLV IN protein binds synthetic oligonucleotides containing att sequences, with specificity towards its cognate (MuLV) sequences. The terminal 13 base pairs, which are identical at both ends of viral DNA, are sufficient for binding if present at the ends of oligonucleotide duplexes in the same orientation as in linear viral DNA. However, only weak binding was observed when the same sequences were positioned within a substrate in a manner simulating att junctions in circular viral DNA with two long terminal repeats. Binding to att sites in oligonucleotides simulating linear viral DNA was dependent on the presence of the highly conserved CA residues preceding the site for 3' processing (an IN-dependent reaction that removes two nucleotides from the 3' ends of linear viral DNA); mutation of CA to TG abolished binding, and a CA to TA change reduced affinity by at least 20-fold. Removal of either the terminal two base pairs from both ends of the oligonucleotide duplex or the terminal two nucleotides from the 3' ends of each strand did not affect binding. The removal of three 3' terminal nucleotides, however, abolished binding, suggesting an essential role for the A residue immediately upstream of the 3' processing site in the binding reaction. These results help define the sequence requirements for att site recognition by IN, explain the conservation of the subterminal CA dinucleotide, and provide a simple assay for sequence-specific IN activity.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Wojtuszewski K  Mukerji I 《Biochemistry》2003,42(10):3096-3104
HU, an architectural DNA-binding protein, either stabilizes DNA in a bent conformation or induces a bend upon binding to give other proteins access to the DNA. In this study, HU binding affinity for a bent DNA sequence relative to a linear sequence was investigated using fluorescence anisotropy measurements. A static bend was achieved by the introduction of two phased A4T4 tracts in a 20 bp duplex. Binding affinity for 20 bp duplexes containing two phased A-tracts in either a 5'-3' or 3'-5' orientation was found to be almost 10-fold higher than HU binding to a random sequence 20 bp duplex (6.1 vs 0.68 microM(-1)). The fluorescence technique of resonance energy transfer was used to quantitatively determine the static bend of the DNA duplexes and the HU-induced bend. DNA molecules were 5'-end labeled with fluorescein as the donor or rhodamine as the acceptor. From the efficiency of energy transfer, the end-to-end distance of the DNA duplexes was calculated. The end-to-end distance relative to DNA contour length (R/R(C)) yields a bend angle for the A-tract duplex of 45 +/- 7 degrees in the absence of HU and 70 +/- 3 degrees in the presence of HU. The bend angle calculated for the T4A4 tract duplex was 62 +/- 4 degrees after binding two HU dimers. Fluorescence anisotropy measurements reveal that HU binds in a 1:1 stoichiometry to the A4T4 tract duplex but a 2:1 stoichiometry to the T4A4 tract and random sequence duplex. These findings suggest that HU binding and recognition of DNA may be governed by a structural mechanism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号