首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological basis for pigment synthesis in lepidopteran wing scales is well‐studied, although less is known about the reasons why individuals of the same species vary in pigmentation. Monarch butterflies (Danaus plexippus L.) show subtle variations in the shade of orange on their wings and this is known to predict flight ability and mating success. The present study tests the possibility that the shade of orange is associated with the amount of residual energy reserves carried over from the larval stage. Using monarchs reared in captivity under identical conditions (n = 207), the residuals of a regression of wing size and mass at eclosion, which indicate larval energy reserves, are obtained. This measure is positively related to adult longevity without feeding, indicating the importance of this reserve to the monarchs, as well as the value of the measure for this investigation. The shade of orange (i.e. hue) is determined on scanned wings using image analysis. Importantly, orange hue is predicted significantly by residual mass at eclosion (individuals with more mass are redder). The linkage between these traits may explain previous findings whereby redder monarchs fly further and mate more because both behaviours would be enhanced with greater energy stores. The findings of the present study add to a growing body of work showing how intraspecific variation in pigmentation has biological significance to monarchs, and possibly other butterflies. Although much remains to be investigated regarding the physiological underpinnings of this variation, the results of the present study indicate that future efforts should be rewarding.  相似文献   

2.
In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus), a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed) from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width), which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%). Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high) had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success.  相似文献   

3.
C. S. Guppy 《Oecologia》1986,70(2):205-213
Summary The adaptive significance of alpine melanism, the tendancy for insects to become darker with increased elevation and latitude, was investigated using the butterfly Parnassius phoebus. The effects on temperature dependent activity of five components of overall wing melanism, as well as size, were examined. The components of wing melanism examined were the transparency of the basal hindwing and distal fore-wing areas, the width of the black patch in the basal hind-wing area and the proportion of black to white scales in that area, and the proportion of the distal fore-wing covered by predominantly black scaling.The body temperature of dead specimens was correlated with air temperature, solar radiation, the width of the black patch at the base of the wings, and the proportion of black to white scales at the base of the wings. The minimum air temperatures and solar radiation levels required for initiation of flight did not vary with wing melanism of P. phoebus, in contrast to the results found for Colias butterflies by Roland (1982). However, under environmental conditions suitable for flight initiation, males with a higher proportion of black to white scales in the basal area of the hind-wing, and wider basal black patches, spent a greater proportion of time in flight at low air temperatures and low insolation. Increased basal wing melanism was also associated with increased movement of males within a population. In contrast, melanism in the distal area of the wings has no effect on activities which are dependant on body temperature. The amount of time spent feeding did not vary with differences in wing melanism. I suggest that in dorsal basking, slow-flying butterflies (Parnassius) basal wing color affects body temperature primarily during flight (rather than while basking), such that butterflies with darker wing bases cool down less rapidly because they absorb more solar radiation during flight.  相似文献   

4.
The majority of migrant monarchs (Danaus plexippus) from the eastern USA and south‐eastern Canada migrate to Mexico; however, some of them migrate to Cuba. Cuban migrants hatch in south‐east Canada and eastern USA, and then engage in a southern trip of 4000 km to this Caribbean island. In Cuba, these migrants encounter resident monarchs, which do not migrate, and instead move between plant patches looking for nectar, mating partners and host plants. These differences in flight behaviour between migrant and resident Cuban monarchs may have resulted in different selective pressures in the wing size and shape. Two modes of selection were tested, directional and stabilizing. In addition, wing condition was compared between these two groups. Monarchs were collected for 4 years in Cuba and classified as resident or migrant using two independent techniques: Thin‐layer chromatography and stable hydrogen and stable carbon isotope measurements. Wing size was measured and wing condition was rated in the butterflies. Fourier analysis and wing angular measurements were used to assess wing shape differences. Migrants have significantly longer wings than residents, thus supporting the action of directional selection on wing size. In addition, directional selection acts on wing shape; that is, migrant females differ significantly from resident females in their wing angles. However, the results do not support the action of stabilizing selection: there was no significant variance between migrant and resident monarchs in their wing size or shape. Also, migrant females and males differed in wing condition as a result of differences in flight behaviour. In conclusion, eastern North American monarchs offer a good opportunity to study the selective pressures of migration on wing morphology and how different migratory routes and behaviours are linked to wing morphology and condition. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 605–616.  相似文献   

5.
The demands of long‐distance flight represent an important evolutionary force operating on the traits of migratory species. Monarchs are widespread butterflies known for their annual migrations in North America. We examined divergence in wing morphology among migratory monarchs from eastern and western N. America, and nonmigratory monarchs in S. Florida, Puerto Rico, Costa Rica, and Hawaii. For the three N. American populations, we also examined monarchs reared in four common environment experiments. We used image analysis to measure multiple traits including forewing area and aspect ratio; for laboratory‐reared monarchs we also quantified body area and wing loading. Results showed wild monarchs from all nonmigratory populations were smaller than those from migratory populations. Wild and captive‐reared eastern monarchs had the largest and most elongated forewings, whereas monarchs from Puerto Rico and Costa Rica had the smallest and roundest forewings. Eastern monarchs also had the largest bodies and high measures of wing loading, whereas western and S. Florida monarchs had less elongated forewings and smaller bodies. Among captive‐reared butterflies, family‐level effects provided evidence that genetic factors contributed to variation in wing traits. Collectively, these results support evolutionary responses to long‐distance flight in monarchs, with implications for the conservation of phenotypically distinct wild populations.  相似文献   

6.
Monarch butterflies (Danaus plexippus) are parasitized by the protozoan Ophryocystis elektroscirrha throughout their geographical range. Monarchs inhabiting seasonally fluctuating environments migrate annually, and parasite prevalence is lower among migratory relative to non‐migratory populations. One explanation for this pattern is that long‐distance migration weeds out infected animals, thus reducing parasite prevalence and transmission between generations. In this study we experimentally infected monarchs from a migratory population and recorded their long‐distance flight performance using a tethered flight mill. Results showed that parasitized butterflies exhibited shorter flight distances, slower flight speeds, and lost proportionately more body mass per km flown. Differences between parasitized and unparasitized monarchs were generally not explained by individual variation in wing size, shape, or wing loading, suggesting that poorer flight performance among parasitized hosts was not directly caused by morphological constraints. Effects of parasite infection on powered flight support a role for long‐distance migration in dramatically reducing parasite prevalence in this and other host–pathogen systems.  相似文献   

7.
Batesian mimics can parasitize Müllerian mimicry rings mimicking the warning color signal. The evolutionary success of Batesian mimics can increase adding complexity to the signal by behavioral and locomotor mimicry. We investigated three fundamental morphological and locomotor traits in a Neotropical mimicry ring based on Ithomiini butterflies and parasitized by Polythoridae damselflies: wing color, wing shape, and flight style. The study species have wings with a subapical white patch, considered the aposematic signal, and a more apical black patch. The main predators are VS‐birds, visually more sensitive to violet than to ultraviolet wavelengths (UVS‐birds). The white patches, compared to the black patches, were closer in the bird color space, with higher overlap for VS‐birds than for UVS‐birds. Using a discriminability index for bird vision, the white patches were more similar between the mimics and the model than the black patches. The wing shape of the mimics was closer to the model in the morphospace, compared to other outgroup damselflies. The wing‐beat frequency was similar among mimics and the model, and different from another outgroup damselfly. Multitrait aposematic signals involving morphology and locomotion may favor the evolution of mimicry rings and the success of Batesian mimics by improving signal effectiveness toward predators.  相似文献   

8.
The thermal impact of the birds’ color on their flight performance are investigated. In most of the large migrating birds, the top of their wings is black. Considering this natural phenomenon in the migrating birds, such as albatross, a thermal analysis of the boundary layer of their wings is performed during the year depending on the solar insulation. It is shown that the temperature difference between the bright and dark colored top wing surface is around 10 °C. The dark color on the top of the wing increases the temperature of the boundary layer over the wing which consequently reduces the skin drag force over the wing. This reduction in the drag force can be considered as one of the effective factors for long endurance of these migrating birds. This research should lead to improved designs of the drones by applying the inspired colors which can help drones increase their endurance.  相似文献   

9.
Wings are a key trait underlying the evolutionary success of birds, bats, and insects. For over a century, researchers have studied the form and function of wings to understand the determinants of flight performance. However, to understand the evolution of flight, we must comprehend not only how morphology affects performance, but also how morphology and performance affect fitness. Natural and sexual selection can either reinforce or oppose each other, but their role in flight evolution remains poorly understood. Here, we show that wing shape is under antagonistic selection with regard to sexual and natural selection in a scrambling damselfly. In a field setting, natural selection (survival) favored individuals with long and slender forewings and short and broad hindwings. In contrast, sexual selection (mating success) favored individuals with short and broad forewings and narrow‐based hindwings. Both types of selection favored individuals of intermediate size. These results suggest that individuals face a trade‐off between flight energetics and maneuverability and demonstrate how natural and sexual selection can operate in similar directions for some wing traits, that is, wing size, but antagonistically for others, that is, wing shape. Furthermore, they highlight the need to study flight evolution within the context of species’ mating systems and mating behaviors.  相似文献   

10.
Abstract. 1. Reproductive costs associated with flight capability were evaluated in the wing dimorphic planthopper, Prokelisia dolus Wilson, by comparing the life history of traits of winged (macropterous) and flightless (brachypterous) females under controlled laboratory conditions.
2. Macropters with large thoraces and fully developed wings maintain a greater investment in flight apparatus than brachypters with small thoraces and reduced wings.
3. Associated with greater flight capability in the macropter of P.dolus are shorter adult life, decreased total fecundity, and delayed age at first reproduction compared to brachypterous females.
4. Under field conditions where mortality is high, the difference in realized fecundity between the two wing forms living on similar resources is further exaggerated with the brachypter having the greater advantage.
5. When the life history traits of the wing forms of P. dolus are compared with traits for nine other species of planthoppers, two similarities emerge. First, the preoviposition period of the macropterous wing form is always longer than that for the brachypter resulting in a reproductive delay. Second, most studies show that macropters are less fecund than brachypters.
6. There is no general tendency among planthopper species for macropterous adults to live fewer days or develop more slowly as nymphs compared to their flightless counterparts.
7. The reproductive delay and reduced fecundity of the volent wing form of planthoppers supports the notion that flight capability is costly and that phenotypic trade-offs between flight and reproduction exist.  相似文献   

11.
Many aposematic species show variation in their color patterns even though selection by predators is expected to stabilize warning signals toward a common phenotype. Warning signal variability can be explained by trade‐offs with other functions of coloration, such as thermoregulation, that may constrain warning signal expression by favoring darker individuals. Here, we investigated the effect of temperature on warning signal expression in aposematic Amata nigriceps moths that vary in their black and orange wing patterns. We sampled moths from two flight seasons that differed in the environmental temperatures and also reared different families under controlled conditions at three different temperatures. Against our prediction that lower developmental temperatures would reduce the warning signal size of the adult moths, we found no effect of temperature on warning signal expression in either wild or laboratory‐reared moths. Instead, we found sex‐ and population‐level differences in wing patterns. Our rearing experiment indicated that ~70% of the variability in the trait is genetic but understanding what signaling and non‐signaling functions of wing coloration maintain the genetic variation requires further work. Our results emphasize the importance of considering both genetic and plastic components of warning signal expression when studying intraspecific variation in aposematic species.  相似文献   

12.
To determine the cotton bollworm migrating population rate in Hungary, we examined the weights and the front wing morphological feautures of trapped moths. We used sex pheromone traps to monitor field populations during the maize vegetation cycle period in 2008. We examined moths trapped at various times, and measured their body mass (m) and morphological features, namely the front wing quotient (fWQ = quotient of length of front wing/width of front wing), modified wing loading (WL = weight of moth/surface of front wing), and the relative thorax size (RTS = width of thorax/width of head). The data were analysed by Student t-test, anterior wing abrasion and darkness were analysed by a Adobe Photoshop 7.0 software. The Hungarian appearance of three cottom bollworm generations in 2008 was also observed. Based on the examined morphological features we found regularity in body mass, front wing quotient and modified wing loading changes during the flight period. The specimens trapped in the first and third part of the flight period had lower body mass, larger wing surface, longer wings and more favourable modified wing loading than the specimens trapped in the middle of the flight period. The abrasion and colour of the anterior wings of cotton bollworms were concordant to morphometric investigations. The abrasion in darker spots E1 and E3 clearly showed a more intensive usage of the wings in case of specimens trapped at the beginning and at the end of the flight period.  相似文献   

13.
Under natural selection, wing shape is expected to evolve to optimize flight performance. However, other selective factors besides flight performance may influence wing shape. One such factor could be sexual selection in wing sexual ornaments, which may lead to alternative variations in wing shape that are not necessarily related to flight performance. In the present study, we investigated wing shape variations in a calopterygid damselfly along a latitudinal gradient using geometric morphometrics. Both sexes show wing pigmentation, which is a known signal trait at intra‐ and interspecific levels. Wing shape differed between sexes and, within the same sex, the shape of the hind wing differed from the front wing. Latitude and body size explained a high percentage of the variation in wing shape for female front and hind wings, and male front wings. In male hind wings, wing pigmentation explained a high amount of the variation in wing shape. On the other hand, the variation in shape explained by pigmentation was very low in females. We suggest that the conservative morphology of front wings is maintained by natural selection operating on flight performance, whereas the sex‐specific differences in hind wings most likely could be explained by sexual selection. The observed sexual dimorphism in wing shape is likely a result of different sex‐specific behaviours. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 263–274.  相似文献   

14.
Wing design in birds is subject to a suite of interacting selective pressures. As different performance traits are favoured in different ecological settings, a tight link is generally expected between variation in wing morphology and variation in ecological parameters. In the present study, we document aspects of variation in wing morphology in the medium ground finch ( Geospiza fortis ) on Isla Santa Cruz in the Galápagos. We compare variation in body size, simple morphometric traits (body mass, last primary length, wing length, wing chord, and wing area) and functional traits (wing loading, aspect ratio and wing pointedness) across years, among populations, and between sexes. Functional traits are found to covary across years with differences in climatic conditions, and to covary among populations with differences in habitat structure. In dry years and arid locations, wing aspect ratios are highest and wings are more pointed, consistent with a need for a low cost of transport. In wet years and cluttered habitats, wing loading is lowest and wings are more rounded, suggesting enhanced capabilities for manoeuvrability. Sexes differ in wing loading, with males having lower wing loadings than females. Superior manoeverability might be favoured in males for efficient territory maintenance. Lastly, in contrast to functional traits, we found little consistent inter-annual or inter-site variation in simple morphometric traits.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 129–138.  相似文献   

15.
The Drosophila wing has been used as a model in studies of morphogenesis and evolution; the use of such models can contribute to our understanding of mechanisms that promote morphological divergence among populations and species. We mapped quantitative trait loci (QTL) affecting wing size and shape traits using highly inbred introgression lines between D. simulans and D. sechellia, two sibling species of the melanogaster subgroup. Eighteen QTL peaks that are associated with 12 wing traits were identified, including two principal components. The wings of D. simulans and D. sechellia significantly diverged in size; two of the QTL peaks could account for part of this interspecific divergence. Both of these putative QTLs were mapped at the same cytological regions as other QTLs for intraspecific wing size variation identified in D. melanogaster studies. In these regions, one or more loci could account for intra- and interspecific variation in the size of Drosophila wings. Three other QTL peaks were related to a pattern of interspecific variation in wing size and shape traits that is summarized by one principal component. In addition, we observed that female wings are significantly larger and longer than male wings and the second, fourth and fifth longitudinal veins are closer together at the distal wing area. This pattern was summarized by another principal component, for which one QTL was mapped.  相似文献   

16.
Body size influences wing shape and associated muscles in flying animals which is a conspicuous phenomenon in insects, given their wide range in body size. Despite the significance of this, to date, no detailed study has been conducted across a group of species with similar biology allowing a look at specific relationship between body size and flying structures. Neotropical social vespids are a model group to study this problem as they are strong predators that rely heavily on flight while exhibiting a wide range in body size. In this paper we describe the variation in both wing shape, as wing planform, and mesosoma muscle size along the body size gradient of the Neotropical social wasps and discuss the potential factors affecting these changes. Analyses of 56 species were conducted using geometric morphometrics for the wings and lineal morphometrics for the body; independent contrast method regressions were used to correct for the phylogenetic effect. Smaller vespid species exhibit rounded wings, veins that are more concentrated in the proximal region, larger stigmata and the mesosoma is proportionally larger than in larger species. Meanwhile, larger species have more elongated wings, more distally extended venation, smaller stigmata and a proportionally smaller mesosoma. The differences in wing shape and other traits could be related to differences in flight demands caused by smaller and larger body sizes. Species around the extremes of body size distribution may invest more in flight muscle mass than species of intermediate sizes.  相似文献   

17.
Males of the damselfly Mnais costalis Selys (Odonata: Calopterygidae) are morphologically and behaviourally polymorphic, typically existing as clear-winged non-territorial ‘sneaks’ and orange-winged territorial ‘fighters’. The amount of orange pigment in the wing, as measured with a chromameter, varied between individuals, and decreased as the reproductive season progressed. Young individuals maintained in the laboratory on high or low nutrient diets differed in the amount of pigment that developed in the wing. Males in the high nutrient group developed darker wings faster than those in the low nutrient group. Young adults of both sexes and morphs were fed 14C-radiolabelled tryptophan or tyrosine (precursors of the pigments ommochrome and melanin, respectively). Ommochrome was restricted to the pseudopterostigma of the males of both morphs and was not present in females. The presence of tyrosine in the wing cells of orange males, but not of clear males, indicated that the orange pigment is at least partly constituted from melanin. These data show that at least some pigment levels must be maintained continuously in the wings of orange males, and that maintenance is costly as it is compromised at low nutrient levels.  相似文献   

18.
S.J. McCauley 《水生昆虫》2013,35(3-4):195-204
Morphology is an important determinant of flight performance and can shape species’ dispersal behaviour. This study contrasted the morphology of flight-related structures in dragonfly species with different dispersal behaviours to gain insights into the relationship between morphology and dispersal behaviour. Specifically, wing size, wing shape and thorax size were compared in three co-occurring species from different clades within the genus Libellula (Odonata: Anisoptera: Libellulidae) to assess how these morphological traits are related to differences in dispersal behaviour and to how broadly their larvae occur across a habitat gradient. Two species had broad larval habitat distributions as well as high rates and distances of dispersal. These two species had relatively larger wings and thoraces than the third species, which was found only in permanent lakes and had limited dispersal. The hind-wings of more dispersive species also had lower aspect ratios and a relatively wider basal portion of the wing than the less dispersive species. Broad hind-wings may facilitate the use of gliding flight and reduce the energetic costs of dispersal. Determining the morphological traits associated with alternative dispersal behaviours may be a useful tool to assess the differential dispersal capacities of species or populations.  相似文献   

19.
Wings have evolved in phylogenetically distant organisms with morphologies that depend on the combined effects of diverse, potentially contrasting selective forces. In birds, long pointed wings boost speed and energetic efficiency during cruising flight but reduce manoeuvrability. Migratory behavior is believed to lead to the evolution of more pointed wings, but selection on pointedness has never been estimated. Because annual routines of migrants are tightly scheduled, wing pointedness may be selected for because it allows for earlier arrival to the breeding grounds. In long‐distance migratory barn swallows Hirundo rustica we showed that selection via breeding date and thus annual fecundity operates on wing pointedness, but not on other wing traits, among yearling females but not among older females or males. Selection on wing pointedness specifically in yearling females may result from climatic effects, which favour earlier arrival from migration, and from yearling females being the sex‐by‐age class with the latest migration and the smallest wing pointedness. Wing morphology differed between sexes and age classes because of change in size of the outermost but not the innermost wing feathers. Hence, sex‐ and age‐specific selection on wing pointedness operates in a species with sex‐ and age‐dependent variation in phenology and wing morphology.  相似文献   

20.
Bergman and converse Bergman rules, amongst others, describe latitudinal variation in size of organisms, including flying ectotherms like butterflies. However, geographic clines in morphological traits of functional significance for flight performance and thermoregulation may also exist, although they have received less attention within a biogeographical context. Variation in flight‐related morphology has often been studied relative to landscape structure. However, the extent to which landscape effects interact with latitudinal clines of phenotypic variation has rarely been tested. Here we address the effect of latitude, landscape type and the interaction effect on body size and flight‐related morphology in the speckled wood butterfly Pararge aegeria. Male adult butterflies were collected from two replicate populations in each agricultural and woodland landscape types along a 700 km cline in six latitudinal zones. Overall size, adult body mass and wing area increased with latitude in line with Bergmann's rule. Forewing length, however, decreased with latitude. As predicted from thermoregulatory needs in ectotherms, the basal wing part was darker to the north. Latitudinal trends for flight‐related morphological traits were opposite to predictions about flight endurance under cooler conditions that were observed in some non‐lepidopteran insects, i.e. wing loading increased and wing aspect ratio decreased with latitude. Opposite trends can, however, be explained by other aspects of butterfly flight performance (i.e. mate‐location behaviour). As predicted from differences in environmental buffering in woodland landscapes along the latitudinal gradient, significant landscape×latitude interaction effects indicated stronger latitudinal clines and stronger phenotypic variation for size and flight morphology in the agricultural landscape compared to the woodland landscape. In agreement with significant interaction effects, morphological differentiation increased with latitude and was higher between population pairs of agricultural landscape than between population pairs of woodland landscape. These results demonstrate that landscape, latitude and their interaction contribute to the understanding of the complex geographic variation in P. aegeria adult phenotypes across Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号