首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.

Purpose

Genetically-targeted therapies are both promising and costly advances in the field of oncology. Several treatments for metastatic melanoma with a mutation in the BRAF gene have been approved. They extend life but are more expensive than the previous standard of care (dacarbazine). Vemurafenib, the first drug in this class, costs $13,000 per month ($207,000 for a patient with median survival). Patients failing vemurafenib are often given ipilimumab, an immunomodulator, at $150,000 per course. Assessment of cost-effectiveness is a valuable tool to help navigate the transition toward targeted cancer therapy.

Methods

We performed a cost-utility analysis to compare three strategies for patients with BRAF+ metastatic melanoma using a deterministic expected-value decision tree model to calculate the present value of lifetime costs and quality-adjusted life years (QALYs) for each strategy. We performed sensitivity analyses on all variables.

Results

In the base case, the incremental cost-effectiveness ratio (ICER) for vemurafenib compared with dacarbazine was $353,993 per QALY gained (0.42 QALYs added, $156,831 added). The ICER for vemurafenib followed by ipilimumab compared with vemurafenib alone was $158,139. In sensitivity analysis, treatment cost had the largest influence on results: the ICER for vemurafenib versus dacarbazine dropped to $100,000 per QALY gained with a treatment cost of $3600 per month.

Conclusion

The cost per QALY gained for treatment of BRAF+ metastatic melanoma with vemurafenib alone or in combination exceeds widely-cited thresholds for cost-effectiveness. These strategies may become cost-effective with lower drug prices or confirmation of a durable response without continued treatment.  相似文献   

2.
Splenic rupture is rare but life threatening complication of mononucleosis syndrome. It has been suggested that subcapsular splenic hematoma formation precedes rupture. The case of 44-year-old, previously healthy, male with splenic hematoma occurring after rising of heavy cargo is reported. Mononucleosis syndrome was suggested based on routine laboratory tests (elevated white blood cell count with predominance of lymphocytes and raised serum transaminases) and CMV infection was confirmed by serological test. Nonoperative management was used since the patient was hemodynamically stable with no further signs of splenic rupture. The same approach has been used in growing number of cases of patients with spontaneous splenic rupture in mononucleosis syndrome. Importance of considering splenic hematoma and/or rupture if abdominal pain occurs in the course of mononucleosis syndrome is outlined as well as importance of routine laboratory tests in suspecting mononucleosis syndrome in otherwise clinically silent patient.  相似文献   

3.
目的:研究磷酸甘油酸酯激酶1(PGK1)对BRAFV600E突变型恶性黑色素瘤(MM)对Vemurafenib (Zelboraf®)敏感性的影响及其机制。方法:采用分子生物学、细胞生物学、药理学相关实验方法(MTT、Western blot、FCM、Colongenic)探讨:①PGK1以及Vemurafenib对MM细胞的存活增殖能力的影响;②通过siPGK1基因增加Vemurafenib药敏感性的机制。结果:①沉默PGK1基因后再给以BRAFV600E选择性抑制剂Vemurfenib,MM细胞系的存活率明显下降,并呈一定的剂量依赖性;②siPGK1增加MM细胞对Vemurafenib的药物敏感性与激活凋亡信号通路有关。结论:siPGK1通过激活凋亡信号通路增加MM细胞对Vemurafenib的药物敏感性,从而抑制细胞的存活和增殖能力。  相似文献   

4.

Purpose

Dendritic cells (DCs) can induce strong tumor-specific T-cell immune responses. Constitutive upregulation of the mitogen-activated protein kinase (MAPK) pathway by a BRAFV600 mutation, which is present in about 50 % of metastatic melanomas, may be linked to compromised function of DCs in the tumor microenvironment. Targeting both MEK and BRAF has shown efficacy in BRAFV600 mutant melanoma.

Methods

We co-cultured monocyte-derived human DCs with melanoma cell lines pretreated with the MEK inhibitor U0126 or the BRAF inhibitor vemurafenib. Cytokine production (IL-12 and TNF-α) and surface marker expression (CD80, CD83, and CD86) in DCs matured with the Toll-like receptor 3/Melanoma Differentiation-Associated protein 5 agonist polyI:C was examined. Additionally, DC function, viability, and T-cell priming capacity were assessed upon direct exposure to U0126 and vemurafenib.

Results

Cytokine production and co-stimulation marker expression were suppressed in polyI:C-matured DCs exposed to melanoma cells in co-cultures. This suppression was reversed by MAPK blockade with U0126 and/or vemurafenib only in melanoma cell lines carrying a BRAFV600E mutation. Furthermore, when testing the effect of U0126 directly on DCs, marked inhibition of function, viability, and DC priming capacity was observed. In contrast, vemurafenib had no effect on DC function across a wide range of dose concentrations.

Conclusions

BRAFV600E mutant melanoma cells modulate DC through the MAPK pathway as its blockade can reverse suppression of DC function. MEK inhibition negatively impacts DC function and viability if applied directly. In contrast, vemurafenib does not have detrimental effects on important functions of DCs and may therefore be a superior candidate for combination immunotherapy approaches in melanoma patients.  相似文献   

5.
B7‐H3 (CD276) belongs to the B7 family of immunoregulatory proteins and has been implicated in cancer progression and metastasis. In this study, we found that metastatic melanoma cells with knockdown expression of B7‐H3 showed modest decrease in proliferation and glycolytic capacity and were more sensitive to dacarbazine (DTIC) chemotherapy and small‐molecule inhibitors targeting MAP kinase (MAPK) and AKT/mTOR pathways: vemurafenib (PLX4032; BRAF inhibitor), binimetinib (MEK‐162; MEK inhibitor), everolimus (RAD001; mTOR inhibitor), and triciribidine (API‐2; AKT inhibitor). Similar effects were observed in melanoma cells in the presence of an inhibitory B7‐H3 monoclonal antibody, while the opposite was seen in B7‐H3‐overexpressing cells. Further, combining B7‐H3 inhibition with small‐molecule inhibitors resulted in significantly increased antiproliferative effect in melanoma cells, as well as in BRAFV600E mutated cell lines derived from patient biopsies. Our findings indicate that targeting B7‐H3 may be a novel alternative to improve current therapy of metastatic melanoma.  相似文献   

6.
BACKGROUND: Thoracic splenosis is a rare event, and fine needle aspiration (FNA) of a pleural implant of splenic tissue can be a pitfall when previous anamnestic data are ignored. CASE: A 53-year-old male underwent FNA of a left thoracic subpleural nodule highly suggestive of a metastatic lesion. The presence of a population of small and medium-sized lymphocytes suggested the possibility of lymphoproliferative disease; frozen sections confirmed this possibility. The final diagnosis was normal splenic tissue. Twenty-five years earlier the patient sustained a gunshot wound in the left side of the upper abdomen followed by splenectomy and drainage of the left pleural cavity because of mild, concomitant hemothorax. CONCLUSION: A left pleural thoracic nodule in subjects with a previous history of traumatic rupture of the spleen must be considered highly suggestive of thoracic splenosis. Scintigraphy with Tc 99 m and magnetic resonance imaging are diagnostic, while FNA, especially in the absence of anamnestic data, can create a pitfall that can induce inappropriate removal of ectopic, normally functioning splenic tissue.  相似文献   

7.
Melanocortin‐1 receptor (MC1R) plays a key role in skin pigmentation, and its variants are linked with a higher melanoma risk. The influence of MC1R variants on the outcomes of patients with metastatic melanoma (MM) treated with BRAF inhibitors (BRAFi) is unknown. We studied the MC1R status in a cohort of 53 consecutive BRAF‐mutated patients with MM treated with BRAFi. We also evaluated the effect of vemurafenib in four V600BRAF melanoma cell lines with/without MC1R variants. We found a significant correlation between the presence of MC1R variants and worse outcomes in terms of both overall response rate (ORR; 59% versus 95%, P = 0.011 univariate, P = 0.028 multivariate analysis) and progression‐free survival (PFS) shorter than 6 months (72% versus 33%, P = 0.012 univariate, P = 0.027 multivariate analysis). No difference in overall survival (OS) was reported, probably due to subsequent treatments. Data in vitro showed a significant different phosphorylation of Erk1/2 and p38 MAPK during treatment, associated with a greater increase in vemurafenib IC50 in MC1R variant cell lines.  相似文献   

8.

Introduction

We report a rare case of gastrointestinal perforation following dacarbazine infusion for metastatic melanoma. The condition is attributed to a responding malignant melanoma in the gastrointestinal tract.

Case presentation

A 52-year-old Caucasian man presented with abdominal pain and distension, malaise, night sweats, dysphagia and early satiety. A computed tomography scan showed massive ascites, lymphadenopathy and liver lesions suspect for metastases. An upper gastrointestinal endoscopy was performed and revealed multiple dark lesions of 5 mm to 10 mm in his stomach and duodenum. When his skin was re-examined, an irregular pigmented lesion over the left clavicle measuring 15 mm × 8 mm with partial depigmentation was found. Histological examination of a duodenal lesion was consistent with a diagnosis of metastatic melanoma. The patient deteriorated and his level of lactate dehydrogenase rapidly increased. The patient was started on systemic treatment with dacarbazine 800 mg/m2 every three weeks and he was discharged one day after the first dose. On the sixth day he was readmitted with severe abdominal pain. A chest X-ray showed the presence of free intraperitoneal air that was consistent with gastrointestinal perforation. His lactate dehydrogenase level had fallen from 6969U/L to 1827U/L, supporting the conclusion that the response of gastrointestinal metastases to dacarbazine had resulted in the perforation of the patient's bowel wall. A laparotomy was discussed with the patient and his family but he decided to go home with symptomatic treatment. He died 11 days later.

Conclusion

Melanoma can originate in, as well as metastasize to, the gastrointestinal tract. Gastrointestinal perforations due to responding tumors are a well-known complication of systemic treatment of gastrointestinal lymphomas. However, as the response rate of metastatic melanoma to dacarbazine is only 10% to 20%, and responses are usually only partial, perforation due to treatment response in metastatic melanoma is rare. Medical oncologists should be aware of the risk of bowel perforation after starting cytotoxic chemotherapy on patients with gastrointestinal metastases.  相似文献   

9.
10.
Oncogenic B-RAF V600E mutation is found in 50% of melanomas and drives MEK/ERK pathway and cancer progression. Recently, a selective B-RAF inhibitor, vemurafenib (PLX4032), received clinical approval for treatment of melanoma with B-RAF V600E mutation. However, patients on vemurafenib eventually develop resistance to the drug and demonstrate tumor progression within an average of 7 months. Recent reports indicated that multiple complex and context-dependent mechanisms may confer resistance to B-RAF inhibition. In the study described herein, we generated B-RAF V600E melanoma cell lines of acquired-resistance to vemurafenib, and investigated the underlying mechanism(s) of resistance. Biochemical analysis revealed that MEK/ERK reactivation through Ras is the key resistance mechanism in these cells. Further analysis of total gene expression by microarray confirmed a significant increase of Ras and RTK gene signatures in the vemurafenib-resistant cells. Mechanistically, we found that the enhanced activation of fibroblast growth factor receptor 3 (FGFR3) is linked to Ras and MAPK activation, therefore conferring vemurafenib resistance. Pharmacological or genetic inhibition of the FGFR3/Ras axis restored the sensitivity of vemurafenib-resistant cells to vemurafenib. Additionally, activation of FGFR3 sufficiently reactivated Ras/MAPK signaling and conferred resistance to vemurafenib in the parental B-RAF V600E melanoma cells. Finally, we demonstrated that vemurafenib-resistant cells maintain their addiction to the MAPK pathway, and inhibition of MEK or pan-RAF activities is an effective therapeutic strategy to overcome acquired-resistance to vemurafenib. Together, we describe a novel FGFR3/Ras mediated mechanism for acquired-resistance to B-RAF inhibition. Our results have implications for the development of new therapeutic strategies to improve the outcome of patients with B-RAF V600E melanoma.  相似文献   

11.

Background

Treatment of metastatic malignant melanoma patients harboring BRAF(V600E) has improved drastically after the discovery of the BRAF inhibitor, vemurafenib. However, drug resistance is a recurring problem, and prognoses are still very bad for patients harboring BRAF wild-type. Better markers for targeted therapy are therefore urgently needed.

Methodology

In this study, we assessed the individual kinase activity profiles in 26 tumor samples obtained from patients with metastatic malignant melanoma using peptide arrays with 144 kinase substrates. In addition, we studied the overall ex-vivo inhibitory effects of vemurafenib and sunitinib on kinase activity status.

Results

Overall kinase activity was significantly higher in lysates from melanoma tumors compared to normal skin tissue. Furthermore, ex-vivo incubation with both vemurafenib and sunitinib caused significant decrease in phosphorylation of kinase substrates, i.e kinase activity. While basal phosphorylation profiles were similar in BRAF wild-type and BRAF(V600E) tumors, analysis with ex-vivo vemurafenib treatment identified a subset of 40 kinase substrates showing stronger inhibition in BRAF(V600E) tumor lysates, distinguishing the BRAF wild-type and BRAF(V600E) tumors. Interestingly, a few BRAF wild-type tumors showed inhibition profiles similar to BRAF(V600E) tumors. The kinase inhibitory effect of vemurafenib was subsequently analyzed in cell lines harboring different BRAF mutational status with various vemurafenib sensitivity in-vitro.

Conclusions

Our findings suggest that multiplex kinase substrate array analysis give valuable information about overall tumor kinase activity. Furthermore, intra-assay exposure to kinase inhibiting drugs may provide a useful tool to study mechanisms of resistance, as well as to identify predictive markers.  相似文献   

12.
Inhibition of the mitogen‐activated protein kinase (MAPK) pathway is a major advance in the treatment of metastatic melanoma. However, its therapeutic success is limited by the rapid emergence of drug resistance. The insulin‐like growth factor‐1 receptor (IGF‐1R) is overexpressed in melanomas developing resistance toward the BRAFV600 inhibitor vemurafenib. Here, we show that hyperactivation of BRAF enhances IGF‐1R expression. In addition, the phosphatase activity of PTEN as well as heterocellular contact to stromal cells increases IGF‐1R expression in melanoma cells and enhances resistance to vemurafenib. Interestingly, PTEN‐negative melanoma cells escape IGF‐1R blockade by decreased expression of the receptor, implicating that only in melanoma patients with PTEN‐positive tumors treatment with IGF‐1R inhibitors would be a suitable strategy to combat therapy resistance. Our data emphasize the crosstalk and therapeutic relevance of microenvironmental and tumor cell‐autonomous mechanisms in regulating IGF‐1R expression and by this sensitivity toward targeted therapies.  相似文献   

13.
Resistance to treatment is the main problem of targeted treatment for cancer. We followed ten patients during treatment with vemurafenib, by three‐dimensional imaging. In all patients, only a subset of lesions progressed. Next‐generation DNA sequencing was performed on sequential biopsies in four patients to uncover mechanisms of resistance. In two patients, we identified mutations that explained resistance to vemurafenib; one of these patients had a secondary BRAF L505H mutation. This is the first observation of a secondary BRAF mutation in a vemurafenib‐resistant patient‐derived melanoma sample, which confirms the potential importance of the BRAF L505H mutation in the development of therapy resistance. Moreover, this study hints toward an important role for tumor heterogeneity in determining the outcome of targeted treatments.  相似文献   

14.
《Translational oncology》2020,13(2):441-451
Vemurafenib, an inhibitor of mutant BRAF activity, is a promising anticancer agent for patients with BRAF-mutant metastatic melanoma. However, it is less effective in BRAF-mutant thyroid cancer, and the reason for this discrepancy is not yet fully elucidated. By RNA sequencing analysis, we identified vascular cell adhesion molecular-1 (VCAM-1) to be highly upregulated in both time- and dose-dependent manners during BRAF inhibition (BRAFi) in a BRAF-mutant papillary thyroid cancer cell line (BCPAP). Cell cytotoxicity and apoptosis assays showed that knockdown of the induced VCAM-1 in BCPAP cells augmented the antitumor effects of vemurafenib, with decreased IC50 values of 1.4 to 0.8 μM. Meanwhile, overexpression of VCAM-1 in a BRAF-mutant anaplastic thyroid cancer cell line (FRO) reduced the sensitivity to vemurafenib, with increased IC50 values of 1.9 to 5.8 μM. Further investigation showed that PI3K-Akt-mTOR pathway was activated during BRAFi. Co-treatment with Akt signaling inhibitor MK2206 decreased the induced expression of VCAM-1 during BRAFi. This combination further improved the efficacy of vemurafenib. Moreover, VCAM-1 promoted migration and invasion in thyroid cancer cells in vitro, which was also indicated in thyroid cancer patients. The present study is the first to demonstrate that VCAM-1 is upregulated in thyroid cancer cells treated with vemurafenib and contributes to vemurafenib resistance in BRAF-mutant thyroid cancer cells. Targeting the PI3K-Akt-mTOR pathway–mediated VCAM-1 response may be an alternative strategy to sensitize BRAF-mutant thyroid cancers to vemurafenib.  相似文献   

15.
Although targeting the V600E activating mutation in the BRAF gene, the most common genetic abnormality in melanoma, has shown clinical efficacy in melanoma patients, response is, invariably, short lived. To better understand mechanisms underlying this acquisition of resistance to BRAF-targeted therapy in previously responsive melanomas, we induced vemurafenib resistance in two V600E BRAF+ve melanoma cell lines, A375 and DM443, by serial in vitro vemurafenib exposure. The resulting approximately 10-fold more vemurafenib-resistant cell lines, A375rVem and D443rVem, had higher growth rates and showed differential collateral resistance to cisplatin, melphalan, and temozolomide. The acquisition of vemurafenib resistance was associated with significantly increased NRAS levels in A375rVem and D443rVem, increased activation of the prosurvival protein, AKT, and the MAPKs, ERK, JNK, and P38, which correlated with decreased levels of the MAPK inhibitor protein, GSTP1. Despite the increased NRAS, whole exome sequencing showed no NRAS gene mutations. Inhibition of all three MAPKs and siRNA-mediated NRAS suppression both reversed vemurafenib resistance significantly in A375rVem and DM443rVem. Together, the results indicate a mechanism of acquired vemurafenib resistance in V600E BRAF+ve melanoma cells that involves increased activation of all three human MAPKs and the PI3K pathway, as well as increased NRAS expression, which, contrary to previous reports, was not associated with mutations in the NRAS gene. The data highlight the complexity of the acquired vemurafenib resistance phenotype and the challenge of optimizing BRAF-targeted therapy in this disease. They also suggest that targeting the MAPKs and/or NRAS may provide a strategy to mitigate such resistance in V600E BRAF+ve melanoma.  相似文献   

16.
BRAF is the most prevalent oncogene and an important therapeutic target in melanoma. In some cancers, BRAF is activated by rearrangements that fuse its kinase domain to 5′ partner genes. We examined 848 comparative genomic hybridization profiles of melanocytic tumors and found copy number transitions within BRAF in 10 tumors, of which six could be further characterized by sequencing. In all, the BRAF kinase domain was fused in‐frame to six N‐terminal partners. No other mutations were identified in melanoma oncogenes. One of the seven melanoma cell lines without known oncogenic mutations harbored a similar BRAF fusion, which constitutively activated the MAP kinase pathway. Sorafenib, but not vemurafenib, could block MAP kinase pathway activation and proliferation of the cell line at clinically relevant concentrations, whereas BRAFV600E mutant melanoma cell lines were significantly more sensitive to vemurafenib. The patient from whom the cell line was derived showed a durable clinical response to sorafenib.  相似文献   

17.
BACKGROUND: Spontaneous splenic rupture (SSR) is a very rare complication described in several hundred patients, mainly as case reports. It is defined as a splenic rupture without antecedent injury. The authors of the present paper describe the only two SSR cases diagnosed at the Hemato-oncology department, coincidentally in one year. PATIENTS: The first patient was admitted to hospital because of planned chemotherapy for relapsed hairy cell leukemia. The second was directed to the Hemato-oncology outpatient department because of anemia and painful splenomegaly diagnosed by a physician. The diagnose of hematologic malignancy (diffuse large B-cell lymphoma) was determined subsequently on the basis of histological examination of the spleen. CONCLUSION: It is necessary to consider SSR not only in patients with known diagnosis of malignant disease but in the patients with negative anamnesis, too. The aim of the paper is to draw attention to the existence of this complication.  相似文献   

18.
An enlarged spleen is considered one of the most common signs of malaria, and splenic rupture rarely occurs as an important life-threatening complication. Splenectomy has been recommended as the treatment of choice for hemodynamically unstable patients. However, a very limited number of splenic rupture patients have been treated with transcatheter coil embolization. Here we report a 38-year-old Korean vivax malaria patient with ruptured spleen who was treated successfully by embolization of the splenic artery. The present study showed that angiographic embolization of the splenic artery may be an appropriate option to avoid perioperative harmful effects of splenectomy in malaria patients.  相似文献   

19.
The UDP-glucuronosyltransferase (UGT) family of enzymes plays a vital role in the detoxification of carcinogens as well as clearance of anti-cancer drugs. In humans, 19 UGT family members have been identified and are expressed in a tissue specific manner throughout the body. However, the UGTs have not been previously characterized in melanocytes or melanoma. In the present study, UGT2B7, UGT2B10, and UGT2B15 were identified as being normally expressed in human melanocytes. The same three UGT family members were also expressed in the primary melanoma cell line WM115. No UGT expression was detected in another primary melanoma cell line, WM3211, or in any metastatic melanoma cell line examined. These results suggest that UGT expression is lost during melanoma progression. Treatment of WM3211 or metastatic melanoma cell lines with anti-cancer agents (including vemurafenib) induced expression of UGT2B7, UGT2B10 and UGT2B15 demonstrating that melanoma cells retain the ability to re-express these same three UGTs. The corresponding increase in glucuronidation activity in melanoma cells following anti-cancer treatment was also observed. Furthermore, knockdown of UGT2B7 in WM115 cells sensitized these cells to treatment by adriamycin and epirubicin indicating that UGT2B7 is involved in resistance to these drugs. However, knockdown of UGT2B7 had no effect on temozolomide toxicity. Taken together, these results clearly demonstrate a role for UGTs in melanoma etiology. Since the UGTs are drug metabolism enzymes, we propose that re-expression of the UGTs constitutes a previously unsuspected mechanism for intratumoral drug resistance in melanoma.  相似文献   

20.
Between March 1999 and May 2000, 18 HLA-A*0201+ patients with metastatic melanoma were enrolled in a phase I trial using a dendritic cell (DC) vaccine generated by culturing CD34+ hematopoietic progenitors. This vaccine includes Langerhans cells. The DC vaccine was loaded with four melanoma peptides (MART-1/MelanA, tyrosinase, MAGE-3, and gp100), Influenza matrix peptide (Flu-MP), and keyhole limpet hemocyanin (KLH). Ten patients received eight vaccinations, one patient received six vaccinations, one patient received five vaccinations, and six patients received four vaccinations. Peptide-specific immunity was measured by IFN-γ production and tetramer staining in blood mononuclear cells. The estimated median overall survival was 20 months (range: 2–83), and the median event-free survival was 7 months (range: 2–83). As of August 2005, four patients are alive (three patients had M1a disease and one patient had M1c disease). Three of them have had no additional therapy since trial completion; two of them had solitary lymph node metastasis, and one patient had liver metastasis. Patients who survived longer were those who mounted melanoma peptide-specific immunity to at least two melanoma peptides. The present results therefore justify the design of larger follow-up studies to assess the immunological and clinical outcomes in patients with metastatic melanoma vaccinated with peptide-pulsed CD34-derived DCs.Joseph W. Fay and A. Karolina Palucka have equally contributed to this work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号