共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Cellular signalling》2014,26(7):1466-1475
Nicotinic acid, also known as niacin, is the water soluble vitamin B3 used for decades for the treatment of dyslipidemic diseases. Its action is mainly mediated by the G protein-coupled receptor (GPR) 109A; however, certain regulatory effects on lipid levels occur in a GPR109A-independent manner. The amide form of nicotinic acid, named nicotinamide, acts as a vitamin although neither activates the GPR109A nor exhibits the pharmacological properties of nicotinic acid. In the present study, we demonstrate for the first time that nicotinic acid and nicotinamide bind to and activate the GPER-mediated signalling in breast cancer cells and cancer-associated fibroblasts (CAFs). In particular, we show that both molecules are able to promote the up-regulation of well established GPER target genes through the EGFR/ERK transduction pathway. As a biological counterpart, nicotinic acid and nicotinamide induce proliferative and migratory effects in breast cancer cells and CAFs in a GPER-dependent fashion. Moreover, nicotinic acid prevents the up-regulation of ICAM-1 triggered by the pro-inflammatory cytokine TNF-α and stimulates the formation of endothelial tubes through GPER in HUVECs. Together, our findings concerning the agonist activity for GPER displayed by both nicotinic acid and nicotinamide broaden the mechanisms involved in the biological action of these molecules and further support the potential of a ligand to induce different responses mediated in a promiscuous manner by distinct GPCRs. 相似文献
3.
4.
Toubiana J Rossi AL Grimaldi D Belaidouni N Chafey P Clary G Courtine E Pene F Mira JP Claessens YE Chiche JD 《The Journal of biological chemistry》2011,286(26):23319-23333
Toll-like receptor 2 (TLR2) plays an essential role in innate immunity by the recognition of a large variety of pathogen-associated molecular patterns. It induces its recruitment to lipid rafts induces the formation of a membranous activation cluster necessary to enhance, amplify, and control downstream signaling. However, the exact composition of the TLR2-mediated molecular complex is unknown. We performed a proteomic analysis in lipopeptide-stimulated THP1 and found IMPDHII protein rapidly recruited to lipid raft. Whereas IMPDHII is essential for lymphocyte proliferation, its biologic function within innate immune signal pathways has not been established yet. We report here that IMPDHII plays an important role in the negative regulation of TLR2 signaling by modulating PI3K activity. Indeed, IMPDHII increases the phosphatase activity of SHP1, which participates to the inactivation of PI3K. 相似文献
5.
Quesniaux V Fremond C Jacobs M Parida S Nicolle D Yeremeev V Bihl F Erard F Botha T Drennan M Soler MN Le Bert M Schnyder B Ryffel B 《Microbes and infection / Institut Pasteur》2004,6(10):946-959
The control of Mycobacterium tuberculosis infection depends on recognition of the pathogen and the activation of both the innate and adaptive immune responses. Toll-like receptors (TLR) were shown to play a critical role in the recognition of several pathogens. Mycobacterial antigens recognise distinct TLR resulting in rapid activation of cells of the innate immune system. Recent evidence from in vitro and in vivo investigations, summarised in this review demonstrates TLR-dependent activation of innate immune response, while the induction of adaptive immunity to mycobacteria may be TLR independent. 相似文献
6.
Mae M Iyori M Yasuda M Shamsul HM Kataoka H Kiura K Hasebe A Totsuka Y Shibata K 《FEMS immunology and medical microbiology》2007,49(3):398-409
A significant amount of evidence has been accumulated to show that Toll-like receptors (TLRs) function as sensors for microbial invasion. However, little is known about how signalling triggered by TLRs leads to the phagocytosis of pathogens. This study was designed to determine whether stimulation of TLR2 mainly with the lipopeptide FSL-1 plays a role in the phagocytosis of pathogens by macrophages. FSL-1 enhanced the phagocytosis of Escherichia coli to a markedly greater extent than it did that of Staphylococcus aureus, but did not enhance the phagocytosis of latex beads. FSL-1 stimulation resulted in enhanced phagocytosis of bacteria by macrophages from TLR2(+/+) mice but not by those from TLR2(-/-) mice. Chinese hamster ovary cells stably expressing TLR2 failed to phagocytose these bacteria, but the cells expressing CD14 did. FSL-1 induced upregulation of the expression of phagocytic receptors, including MSR1, CD36, DC-SIGN and Dectin-1 in THP-1 cells. Human embryonic kidney 293 cells transfected with DC-SIGN and MSR1 phagocytosed these bacteria. These results suggest that the FSL-1-induced enhancement of phagocytosis of bacteria by macrophages may be explained partly by the upregulation of scavenger receptors and the C-type lectins through TLR2-mediated signalling pathways, and that TLR2 by itself does not function as a phagocytic receptor. 相似文献
7.
Pasteurella multocida was isolated from cattle affected with haemorrhagic septicaemia and characterized on the basis of morphological, cultural and biochemical tests. Bacterial outer membrane proteins (OMPs) were extracted with 1% Sarkosyl method. P. multocida anti-idiotype vaccine prepared from OMPs (21.3 mg per 100 ml), was evaluated and compared with bacterin supplemented with 10% OMPs and plain alum-adsorbed bacterin in rabbit models. It was observed that OMPs-anti-idiotype vaccine induced high levels of antibody titres (geomean titres -GMT) detected using indirect haemagglutination (IHA) test. The OMPs anti-idiotype antibody titres of 168.9 GMT were obtained to 42.2 GMT in OMPs supplemented bacterin on 21 days post vaccination, while the plain bacterin had the least titre of 27.9 GMT. The OMPs-anti-idiotype vaccine provoked better immunogenic response in terms of highest GMT titres and long lasting effect in rabbits and 100% protection against the challenge with homologous strain of P. multocida,while 88% protection was obtained in rabbits, given OMPs supplemented bacterin. 相似文献
8.
Ohtani M Iyori M Saeki A Tanizume N Into T Hasebe A Totsuka Y Shibata K 《Cellular microbiology》2012,14(1):40-57
Dendritic cells recognize pathogens through pattern recognition receptors such as Toll-like receptors and phagocytose and digest them by phagocytic receptors for antigen presentation. This study was designed to clarify the cross-talk between recognition and phagocytosis of microbes in dendritic cells. The murine dendritic cell line XS106 cells were stimulated with the murine C-type lectin SIGNR1 ligand lipoarabinomannan and the Toll-like receptor 2 ligand FSL-1. The co-stimulation significantly suppressed FSL-1-mediated activation of NF-κB as well as production of TNF-α, IL-6 and IL-12p40 in a dose-dependent manner. The suppression was significantly but not completely recovered by knock-down of SIGNR1. SIGNR1 was associated with Toll-like receptor 2 in XS106 cells. The co-stimulation upregulated the expression of suppressor of cytokine signalling-1 in XS106 cells, the knock-down of which almost completely recovered the suppression of the FSL-1-mediated cytokine production by lipoarabinomannan. In addition, it was found that the MyD88-adaptor-like protein in XS106 cells was degraded by co-stimulation with FSL-1 and lipoarabinomannan in the absence, but not the presence, of the proteasome inhibitor MG132 and the degradation was inhibited by knock-down of suppressor of cytokine signalling-1. This study suggests that Toll-like receptor 2-mediated signalling is negatively regulated by SIGNR1-mediated signalling in dendritic cells, possibly through suppressor of cytokine signalling-1-mediated degradation of the MyD88-adaptor-like protein. 相似文献
9.
CpG oligodeoxynucleotide (CpG ODN) cellular uptake into endosomes, the rate-limiting step of Toll-like receptor 9 (TLR9) signaling, is critical in eliciting innate immune responses. ADP-ribosylation factor 6 (ARF6) is a member of the Ras superfamily, which is critical to a wide variety of cellular events including endocytosis. Here, we found that inhibition of ARF6 by dominant mutants and siRNA impaired CpG ODN-mediated responses, whereas cells expressing the constitutively active ARF6 mutant enhanced CpG ODN-induced cytokine production. Inhibition of ARF6 impaired TLR9 trafficking into endolysosomes, thereby inhibiting proceed functional cleavage of TLR9. Additional studies showed that CpG ODN uptake was increased in ARF6-activated cells but impaired in ARF6-defective cells. Furthermore, cells pretreated with CpG ODN but not GpC ODN had increased CpG ODN uptake due to CpG ODN-induced ARF6 activity. Further studies with ARF6-defective and ARF6-activated cells demonstrated that class III phosphatidylinositol 3-kinases (PI3K) was required for downstream ARF6 regulation of CpG ODN uptake. Together, our findings demonstrate that a novel class III PI3K-ARF6 axis pathway mediates TLR9 signaling by regulating the cellular uptake of CpG ODN. 相似文献
10.
Toll-like receptor 4 mediates innate immune responses to Haemophilus influenzae infection in mouse lung. 总被引:9,自引:0,他引:9
Xiaorong Wang Christian Moser Jean-Pierre Louboutin Elena S Lysenko Daniel J Weiner Jeffrey N Weiser James M Wilson 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(2):810-815
Toll-like receptors (TLRs) have been implicated in the regulation of host responses to microbial Ags. This study characterizes the role of TLR4 in the innate immune response to intrapulmonary administration of Haemophilus influenzae in the mouse. Two different strains of mice efficiently cleared aerosolized H. influenzae concurrent with a brisk elaboration of IL-1beta, IL-6, TNF-alpha, macrophage-inflammatory protein (MIP)-1alpha, and MIP-2 in bronchoalveolar lavage and a corresponding mobilization of intrapulmonary neutrophils. Congenic strains of mice deficient in TLR4 demonstrated a substantial delay in clearance of H. influenzae with diminished IL-1beta, IL-6, TNF-alpha, MIP-1alpha, and MIP-2 in bronchoalveolar lavage and a notable absence of intrapulmonary neutrophils. In TLR4-expressing animals, but not TLR4-deficient animals, TNF-alpha and MIP-1alpha expression was up-regulated in epithelial cells of the conducting airway in response to H. influenzae which was preceded by an apparent activation of the NF-kappaB pathway in these cells based on the findings of decreased overall IkappaB and an increase in its phosphorylated form. This study demonstrates a critical role of TLR4 in mediating an effective innate immune response to H. influenzae in the lung. This suggests that the airway epithelia might contribute to sensing of H. influenzae infection and signaling the innate immune response. 相似文献
11.
Toll-like receptors (TLRs) serve to initiate inflammatory signalling in response to the detection of conserved microbial molecules or products of host tissue damage. Recent evidence suggests that TLR-signalling plays a considerable role in a number of inflammatory diseases, including atherosclerosis and arthritis. Agents which modulate TLR-signalling are, therefore, receiving interest in terms of their potential to modify inflammatory disease processes. One such family of molecules, the oxidised phospholipids (OxPLs), which are formed as a result of inflammatory events and accumulate at sites of chronic inflammation, have been shown to modulate TLR-signalling in both in vitro and in vivo systems. As the interaction between OxPLs and TLRs may play a significant role in chronic inflammatory disease processes, consideration is given in this review to the potential role of OxPLs in the regulation of TLR-signalling. 相似文献
12.
The intracellularly acting Pasteurella multocida toxin (PMT) is a potent mitogen that stimulates Gq-dependent formation of inositol trisphosphate. We show that PMT, a nontoxic mutant of PMT (PMTC1165S), and bombesin each stimulate time-dependent phosphorylation of G alpha q at tyrosine 349. Although PMT and PMTC1165S each cause phosphorylation of G alpha q, only the wild-type toxin activates Gq. Pretreatment of cells with wild-type or mutant PMT potentiated the formation of inositol phosphates stimulated by bombesin equally. These data show that PMT potentiates bombesin receptor signaling through tyrosine phosphorylation of Gq and distinguishes between the two proposed models of Gq activation, showing that tyrosine phosphorylation is not linked to receptor uncoupling. 相似文献
13.
14.
Hirano T Kodama S Fujita K Maeda K Suzuki M 《FEMS immunology and medical microbiology》2007,49(1):75-83
Nontypeable Haemophilus influenzae (NTHi) is considered a major pathogen underlying middle ear infection. This study characterized the role of Toll-like receptor 4 in the innate immune responses to acute otitis media induced by NTHi in mice. We used C3H/HeJ mice, which have nonfunctional Toll-like receptor 4, and normal wild-type C3H/HeN mice. NTHi were injected into the tympanic bulla, and middle ear effusions and tissues were collected. In C3H/HeN mice, the severity of acute otitis media decreased promptly with a significant reduction in bacterial recovery from middle ear effusions 48 h after injection. In contrast, all C3H/HeJ mice had otitis media at all time points examined, and increasing bacterial counts from middle ear effusions were detected in C3H/HeJ mice 72 h after injection. Expression of intracellular adhesion molecule-1 by the middle ear mucosa paralleled the number of polymorphonuclear cells in the middle ear in both strains. The findings of transmission electron microscopy revealed that phagocytosis and phagosome maturation of polymorphonuclear cells was impaired in C3H/HeJ mice. Our findings indicate that Toll-like receptor 4 plays a part in the early accumulation and functional promotion of polymorphonuclear cells in the middle ear for eradicating NTHi infection. 相似文献
15.
Takeshita F Tanaka T Matsuda T Tozuka M Kobiyama K Saha S Matsui K Ishii KJ Coban C Akira S Ishii N Suzuki K Klinman DM Okuda K Sasaki S 《Journal of virology》2006,80(13):6218-6224
Toll-like receptors (TLRs) recognize microbial components and trigger the signaling cascade that activates the innate and adaptive immunity. TLR adaptor molecules play a central role in this cascade; thus, we hypothesized that overexpression of TLR adaptor molecules could mimic infection without any microbial components. Dual-promoter plasmids that carry an antigen and a TLR adaptor molecule such as the Toll-interleukin-1 receptor domain-containing adaptor-inducing beta interferon (TRIF) or myeloid differentiation factor 88 (MyD88) were constructed and administered to mice to determine if these molecules can act as an adjuvant. A DNA vaccine incorporated with the MyD88 genetic adjuvant enhanced antigen-specific humoral immune responses, whereas that with the TRIF genetic adjuvant enhanced cellular immune responses. Incorporating the TRIF genetic adjuvant in a DNA vaccine targeting the influenza HA antigen or the tumor-associated antigen E7 conferred superior protection. These results indicate that TLR adaptor molecules can bridge innate and adaptive immunity and potentiate the effects of DNA vaccines against virus infection and tumors. 相似文献
16.
Seo B Choy EW Maudsley S Miller WE Wilson BA Luttrell LM 《The Journal of biological chemistry》2000,275(3):2239-2245
The dermatonecrotic toxin produced by Pasteurella multocida is one of the most potent mitogenic substances known for fibroblasts in vitro. Exposure to recombinant P. multocida toxin (rPMT) causes phospholipase C-mediated hydrolysis of inositol phospholipids, calcium mobilization, and activation of protein kinase C via a poorly characterized mechanism involving G(q/11) family heterotrimeric G proteins. To determine whether the regulation of G protein pathways contributes to the mitogenic effects of rPMT, we have examined the mechanism whereby rPMT stimulates the Erk mitogen-activated protein kinase cascade in cultured HEK-293 cells. Treatment with rPMT resulted in a dose and time-dependent increase in Erk 1/2 phosphorylation that paralleled its stimulation of inositol phospholipid hydrolysis. Both rPMT- and alpha-thrombin receptor- stimulated Erk phosphorylation were selectively blocked by cellular expression of two peptide inhibitors of G(q/11) signaling, the dominant negative mutant G protein-coupled receptor kinase, GRK2(K220R), and the Galpha(q) carboxyl-terminal peptide, Galpha(q)-(305-359). Like alpha-thrombin receptor-mediated Erk activation, the effect of rPMT was insensitive to the protein kinase C inhibitor GF109203X, but was blocked by the epidermal growth factor receptor-specific tyrphostin, AG1478 and by dominant negative mutants of mSos1 and Ha-Ras. These data indicate that rPMT employs G(q/11) family heterotrimeric G proteins to induce Ras-dependent Erk activation via protein kinase C-independent "transactivation" of the epidermal growth factor receptor. 相似文献
17.
Chen LY Zuraw BL Zhao M Liu FT Huang S Pan ZK 《American journal of physiology. Lung cellular and molecular physiology》2003,284(4):L607-L613
Bacterial lipopolysaccharide (LPS) is a powerful activator of the innate immune system. Exposure to LPS induces an inflammatory reaction in the lung mediated primarily by human blood monocytes and alveolar macrophages, which release an array of inflammatory chemokines and cytokines including IL-8, TNF-alpha, IL-1beta, and IL-6. The signaling mechanisms utilized by LPS to stimulate the release of cytokines and chemokines are still incompletely understood. Pretreatment with the protein tyrosine kinase-specific inhibitors genistein and herbimycin A effectively blocked LPS-induced NF-kappaB activation as well as IL-8 gene expression in human peripheral blood monocytes. However, when genistein was added 2 min after the addition of LPS, no inhibition was observed. Utilizing a coimmunoprecipitation assay, we further showed that LPS-stimulated tyrosine phosphorylation of Toll-like receptor 4 (TLR4) may be involved in downstream signaling events induced by LPS. These findings provide evidence that LPS-induced NF-kappaB activation and IL-8 gene expression use a signaling pathway requiring protein tyrosine kinase and that such regulation may occur through tyrosine phosphorylation of TLR4. 相似文献
18.
Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors 总被引:3,自引:0,他引:3
Toll-like receptors (TLRs) recognize Mycobacterium tuberculosis (Mtb) or Mtb components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signalling cascades involved in the TLR-initiated immune response to mycobacterial infection. Although both TLR2 and TLR4 have been implicated in host interactions with Mtb, the relationship between specific mycobacterial molecules and various signal transduction pathways is not well understood. This review will discuss recent studies indicating critical roles for mycobacteria and mycobacterial components in regulation of mitogen-activated protein kinases and related signal transduction pathways that govern the outcome of infection and antibacterial defence. To better understand the roles of infection-induced signalling cascades in molecular pathogenesis, future studies are needed to clarify mechanisms that integrate the multiple signalling pathways that are activated by engagement of TLRs by both individual mycobacterial molecules and whole mycobacteria. These efforts will allow for the development of novel diagnostic and therapeutic modalities for tuberculosis that targets the intracellular signalling pathways permitting the replication of this nefarious pathogen. 相似文献
19.
Starace D Galli R Paone A De Cesaris P Filippini A Ziparo E Riccioli A 《Biology of reproduction》2008,79(4):766-775
Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns and elicit antimicrobial immune responses. In the testis, viruses can induce pathological conditions, such as orchitis, and may participate in the etiology of testicular cancer; however, the molecular mechanisms involved remain under investigation. It has been suggested that because they constitutively express interferon (IFN)-inducible antiviral proteins, Sertoli cells participate in the testicular antiviral defense system. Previously, we demonstrated a key function of mouse Sertoli cells in the bactericidal testicular defense mechanism mediated by a panel of TLRs. To better characterize the potential role of Sertoli cells in the response against testicular viral infections, we investigated the TLR3 expression and function in these cells. Sertoli cells express TLR3, and under stimulation with the synthetic double-stranded RNA analogue poly (I:C), they produce the proinflammatory molecule ICAM1 and secrete functionally active CCL2 chemokine. Using both pharmacological and genetic approaches, we found that these effects are TLR3-dependent. Moreover, using ELISA, we found that IFNA is constitutively produced and not further inducible, whereas IFNB1 is absent and dramatically induced only by transfected poly (I:C), indicating different control mechanisms underlying IFNA and IFNB1 production. To conclude, poly (I:C) elicits both inflammatory and antiviral responses in Sertoli cells. 相似文献
20.
Bacterial lipopolysaccharide signaling through Toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity 总被引:9,自引:0,他引:9
Rodríguez D Keller AC Faquim-Mauro EL de Macedo MS Cunha FQ Lefort J Vargaftig BB Russo M 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(2):1001-1008
Asthma results from an intrapulmonary allergen-driven Th2 response and is characterized by intermittent airway obstruction, airway hyperreactivity, and airway inflammation. An inverse association between allergic asthma and microbial infections has been observed. Microbial infections could prevent allergic responses by inducing the secretion of the type 1 cytokines, IL-12 and IFN-gamma. In this study, we examined whether administration of bacterial LPS, a prototypic bacterial product that activates innate immune cells via the Toll-like receptor 4 (TLR4) could suppress early and late allergic responses in a murine model of asthma. We report that LPS administration suppresses the IgE-mediated and mast cell-dependent passive cutaneous anaphylaxis, pulmonary inflammation, airway eosinophilia, mucus production, and airway hyperactivity. The suppression of asthma-like responses was not due to Th1 shift as it persisted in IL-12(-/-) or IFN-gamma(-/-) mice. However, the suppressive effect of LPS was not observed in TLR4- or NO synthase 2-deficient mice. Our findings demonstrate, for the first time, that LPS suppresses Th2 responses in vivo via the TLR4-dependent pathway that triggers NO synthase 2 activity. 相似文献