首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide hormones are key messengers in the signaling network between the nervous system, endocrine glands, energy stores and the gastrointestinal tract that regulates feeding and metabolism. Studies on the Drosophila nervous system have uncovered parallels and homologies in homeostatic peptidergic signaling between fruit flies and vertebrates. Yet, the role of enteroendocrine peptides in the regulation of feeding and metabolism has not been explored, with research hampered by the unknown identity of peptides produced by the fly's intestinal tract. We performed a peptidomic LC/MS analysis of the fruit fly midgut containing the enteroendocrine cells. By MS/MS fragmentation, we found 24 peptides from 9 different preprohormones in midgut extracts, including MIP-4 and 2 forms of AST-C. DH(31), CCHamide1 and CCHamide2 are biochemically characterized for the first time. All enteroendocrine peptides represent brain-gut peptides, and apparently are processed by Drosophila prohormone convertase 2 (AMON) as suggested by impaired peptide detectability in amon mutants and localization of amon-driven GFP to enteroendocrine cells. Because of its genetic amenability and peptide diversity, Drosophila provides a good model system to study peptide signaling. The identification of enteroendocrine peptides in the fruit fly provides a platform to address functions of gut peptide hormones in the regulation of feeding and metabolism.  相似文献   

2.
3.
4.
By using degenerate oligonucleotide primers deduced from the conserved regions of the mammalian somatostatin receptors, a novel G-protein-coupled receptor from Drosophila melanogaster has been isolated exhibiting structural similarities to mammalian somatostatin/galanin/opioid receptors. To identify the bioactive ligand, a 'reverse physiology' strategy was used whereby orphan Drosophila receptor-expressing frog oocytes were screened against potential ligands. Agonistic activity was electrophysiologically recorded as inward potassium currents mediated through co-expressed G-protein-gated inwardly rectifying potassium channels (GIRK). Using this approach a novel peptide was purified from Drosophila head extracts. Mass spectrometry revealed an octapeptide of 925 Da with a sequence Ser-Arg-Pro-Tyr-Ser-Phe-Gly-Leu-NH(2) reminiscent of insect allatostatin peptides known to control diverse functions such as juvenile hormone synthesis during metamorphosis or visceral muscle contractions. Picomolar concentrations of the synthesized octapeptide activated the cognate receptor response mediated through GIRK1, indicating that we have isolated the 394-amino-acid Drosophila allatostatin receptor which is coupled to the Gi/Go class of G proteins.  相似文献   

5.
By using degenerate primers based on known mammalian somatostatin receptors and the recently identified Drosophila allatostatin receptors (AlstR), we have cloned a novel receptor for the neuropeptide, allatostatin, from the cockroach Periplaneta americana. The receptor exhibits about 60% amino acid identity in the transmembrane regions when compared to the two known AlstRs from Drosophila melanogaster. In addition, two cDNA fragments were obtained from the stick insect Carausius morosus, one of which is similar to Drosophila AlstR, whereas the other is more similar to mammalian somatostatin receptors. Functional expression in Xenopus oocytes shows that the Periplaneta-AlstR exhibits high affinity to endogenous cockroach allatostatin peptides. Studies with synthetic peptides demonstrate that agonistic activity is mediated by the conserved C-terminal pentapeptide YXFGL-amide; in this sequence, amidation of the C-terminus is obligatory to maintain affinity. Thus, our studies provide a molecular basis for understanding the widespread biological activities of the allatostatin peptides.  相似文献   

6.
7.
Insect neuropeptides are the most diverse and important group of messenger molecules that regulate almost all physiological processes, including behavior. In this study, we performed a combination of matrix assisted laser desorption ionization time of flight (MALDI-TOF) and electrospray ionization quadrupole time of flight (ESI-Q-TOF) mass spectrometry to analyze the peptidome of the brain and the neurohemal organs of the Australian sheep blowfly Lucilia cuprina and compared the data with those of related flies such as the gray flesh fly Sarcophaga (=Neobellieria) bullata; the cabbage root fly Delia radicum, the fruit fly Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. Without counting low intensity signals of truncated peptides, 45 neuropeptides arising from 12 neuropeptide genes (adipokinetic hormone, CAPA-peptides, corazonin, extended FMRFamides, SIFamide, insect kinin, short neuropeptide F, NPLP-1 peptides, HUGIN-pyrokinin, sulfakinins, allatostatins A, putative eclosion hormone precursor peptide) were identified; sequences of extended FMRFamides were reported in a separate publication. The remarkable similarity of the peptidome of cyclorraphan flies, which contain a large number of ecologically important species, does not support the development of a species-specific neuropeptide-based insect pest control strategy. However, mass spectrometric approaches as shown here do not cover the entire peptidome or differences at the receptor level and it is possible that group-specific peptide ligands or receptors exist that escaped the detection.  相似文献   

8.
Arthropods do not have one, but two genes encoding an allatostatin C-like peptide. The newly discovered paralog gene was called Ast-CC, and the peptide which it is predicted to make was called allatostatin double C (ASTCC). Genes for both allatostatin C (ASTC) and its paralog were found in the tick Ixodes scapularis as well as dipteran, lepidopteran, coleopteran, aphidoidean and phthirapteran insect species. In addition partial or complete cDNAs derived from Ast-CCs were found in a number of species, including Drosophila melanogaster, Bombyx mori and Rhodnius prolixus. The ASTCC precursors have a second conserved peptide sequence suggesting that they may produce two biologically active peptides. The predicted precursors encoded by the Ast-CCs have some unusual features, particularly in Drosophila, where they lack a signal peptide, and have instead a peptide anchor. These unusual structural features suggest that they are perhaps expressed by cells that are not specialized in neuropeptide synthesis and that in Drosophila ASTCC may be a juxtacrine. Data from the Fly Atlas project show that in Drosophila Ast-CC is little expressed. Nevertheless a P-element insertion in this gene is embryonic lethal, suggesting that it is an essential gene. Similarity between the precursors and receptors of ASTC/ASTCC and somatostatin suggests that ASTC/ASTCC and somatostatin have a common ancestor.  相似文献   

9.
The insect allatostatins are a diverse group of neuropeptides that obtained their names by their inhibitory actions on the corpora allata (two endocrine glands near the insect brain), where they block the biosynthesis of juvenile hormone (a terpenoid important for development and reproduction). Chemically, the allatostatins can be subdivided into three different peptide groups: the large group of A-type (cockroach-type) allatostatins, which have the common C-terminal sequence Y/FXFGLamide; the B-type (cricket-type) allatostatins, which have the C-terminal sequence W(X(6))Wamide in common; and a single allatostatin that we now call C-type allatostatin that was first discovered in the moth Manduca sexta, and which has a nonamidated C terminus, and a structure unrelated to the A- and B-type allatostatins. We have previously cloned the preprohormones for the A- and B-type allatostatins from Drosophila melanogaster. Here we report on the cloning of a Drosophila C-type allatostatin preprohormone (DAP-C). DAP-C is 121 amino acid residues long and contains one copy of a peptide sequence that in its processed form has the sequence Y in position 4) from the Manduca sexta C-type allatostatin. The DAP-C gene has three introns and four exons and is located at position 32D2-3 on the left arm of the second chromosome. Northern blots show that the gene is strongly expressed in larvae and adult flies, but less in pupae and embryos. In situ hybridizations of larvae show that the gene is expressed in various neurons of the brain and abdominal ganglia and in endocrine cells of the midgut. This is the first publication on the structure of a C-type allatostatin from insects other than moths and the first report on the presence of all three types of allatostatins in a representative of the insect order Diptera (flies).  相似文献   

10.
A program for simulating the patterns of egg-laying by populations of the cabbage root fly was used to model the effects of global warming on future cabbage root fly attacks. An increase of 3°C in mean daily temperature would cause the cabbage root fly to become active about a month earlier in the year than at present. Under such conditions, the emergence of flies from the overwintering population would be less synchronised, as the completion of diapause and post-diapause development would occur at the same time in different individuals within the population. However, there would continue to be only three generations of fly each year, even in the south of England. With temperature increases of 5°C or 10°C, the fly would complete four generations each year and aestivation would seriously disrupt egg-laying. These rises in temperature would have a major impact on cabbage root fly activity and would require new strategies for controlling this pest.  相似文献   

11.
The insect allatostatins are neurohormones, acting on the corpora allata (where they block the release of juvenile hormone) and on the insect gut (where they block smooth muscle contraction). We screened the "Drosophila Genome Project" database with electronic sequences corresponding to various insect allatostatins. This resulted in alignment with a DNA sequence coding for some Drosophila allatostatins (drostatins). Using PCR with oligonucleotide primers directed against the presumed exons of this Drosophila allatostatin gene and subsequent 3'- and 5'-RACE, we were able to clone its cDNA. The Drosophila allatostatin preprohormone contains four amino acid sequences that after processing would give rise to four Drosophila allatostatins: Val-Glu-Arg-Tyr-Ala-Phe-Gly-Leu-NH(2) (drostatin-1), Leu-Pro-Val-Tyr-Asn-Phe-Gly-Leu-NH(2) (drostatin-2), Ser-Arg-Pro-Tyr-Ser-Phe-Gly-Leu-NH(2) (drostatin-3), and Thr-Thr-Arg-Pro-Gln-Pro-Phe-Asn-Phe-Gly-Leu-NH(2) (drostatin-4). Drostatin-2 is identical to helicostatin-2 (11-18) and drostatin-3 to helicostatin-3, two neurohormones previously isolated from the moth Helicoverpa armigera. Furthermore, drostatin-3 has previously been isolated from Drosophila itself. Drostatins-1 and -4 are novel members of the insect allatostatin neuropeptide family. The Drosophila allatostatin preprohormone gene contains two introns and three exons. The gene is located on the right arm of the third chromosome, position 96A-B. The existence of at least four different Drosophila allatostatins opens the possibility of a differential action of some of these hormones on the two recently cloned Drosophila allatostatin receptors, DAR-1 and -2. This is the first report on an allatostatin preprohormone from Drosophila.  相似文献   

12.
Regulatory peptides represent a diverse group of messenger molecules. In insects, they are produced by endocrine cells as well as secretory neurones within the CNS. Many regulatory peptides are released as hormones into the haemolymph to regulate, for example, diuresis, heartbeat or ecdysis behaviour. Hormonal release of neuropeptides takes place at specialized organs, so-called neurohaemal organs. We have performed a mass spectrometric characterization of the peptide complement of the main neurohaemal organs and endocrine cells of the Drosophila melanogaster larva to gain insight into the hormonal communication possibilities of the fruit fly. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) and MALDI-TOF-TOF tandem mass spectrometry, we detected 23 different peptides of which five were unpredicted by previous genome screenings. We also found a hitherto unknown peptide product of the capa gene in the ring gland and transverse nerves, suggesting that it might be released as hormone. Our results show that the peptidome of the neurohaemal organs is tagma-specific and does not change during metamorphosis. We also provide evidence for the first case of differential prohormone processing in Drosophila.  相似文献   

13.
Several signalling pathways have been defined by studies of genes originally characterised in Drosophila. However, some mammalian signalling systems have so far escaped discovery in the fly. Here, we describe the identification and characterisation of fly homologs for the mammalian vascular endothelial growth factor/platelet derived growth factor (VEGF/PDGF) and the VEGF receptor. The Drosophila factor (DmVEGF-1) gene has two splice variants and is expressed during all stages, the signal distribution during embryogenesis being ubiquitous. The receptor (DmVEGFR) gene has several splice variants; the variations affecting only the extracellular domain. The most prominent form is expressed in cells of the embryonic haematopoietic cell lineage, starting in the mesodermal area of the head around stage 10 of embryogenesis. Expression persists in hemocytes as embryonic development proceeds and the cells migrate posteriorly. In a fly strain carrying a deletion uncovering the DmVEGFR gene, hemocytes are still present, but their migration is hampered and the hemocytes remain mainly in the anterior end close to their origin. These data suggest that the VEGF/PDGF signalling system may regulate the migration of the Drosophila embryonic haemocyte precursor cells.  相似文献   

14.
Traps placed within brassica crops to monitor changes in cabbage root fly activity could be made more selective by painting black the inner wall of the standard fluorescent yellow water-traps. Traps could also be made more selective by covering them with cylinders of Netlon mesh, although this procedure reduces the numbers of cabbage root fly caught by about 70%. Of the single-coloured traps tested, those painted “marigold” yellow were the most selective in capturing female cabbage root flies. Although white and certain blue traps were as effective as the best yellow traps at capturing cabbage root flies, such traps should be avoided, as they catch 4–5 times as many of the closely-related bean seed fly. The presence of bean seed flies makes cabbage root fly identification more difficult and adds considerably to the time required to sort trap catches.  相似文献   

15.
The A-allatostatins (F/YXFGLamides) are insect neuropeptides with inhibitory actions on juvenile hormone (JH) synthesis, muscular contraction and vitellogenesis. They exist in multiple forms within each species. In the cockroach, Periplaneta americana, only one receptor for A-allatostatin has been identified thus far. Here, we have characterised the receptor response to all 15 of the endogenous A-allatostatins encoded by the P. americana allatostatin prohormone gene, together with some analogues, using an indirect heterologous system involving co-expression of the receptor and a potassium channel subunit in Xenopus laevis oocytes and electrophysiological measurements. We have also determined the relative potency of the same peptides to inhibit JH synthesis in corpora allata. Our data reveal that the heterologously expressed receptor responds to all of the endogenous allatostatins and, although differences in potency are recorded, this cannot readily be related to particular differences in the primary structure of the peptides. Similarly, all allatostatins act on the corpora allata to inhibit the synthesis of JH, again with varying potency not readily related to peptide structure. Interestingly, some of the peptides did not perform consistently across the two assays. We show that the receptor is widely expressed in adult P. americana tissues (head, retrocerebral glands, fat body, ovary, male accessory gland, gut, leg muscle, Malpighian tubule and nerve cord) as well as in early larval instars. The spatial expression supports the known pleiotropic activity of allatostatins and role as a paracrine effector. This is the first report of such a detailed characterisation of an invertebrate receptor for allatostatin.  相似文献   

16.
We (C. Lenz et al. (2000) Biochem. Biophys. Res. Commun. 269, 91-96) and others (N. Birgül et al. (1999) EMBO J. 18, 5892-5900) have recently cloned a Drosophila receptor that was structurally related to the mammalian galanin receptors, but turned out to be a receptor for a Drosophila peptide belonging to the insect allatostatin neuropeptide family. In the present paper, we screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to the conserved regions of the four rat (delta, kappa, mu, nociceptin/orphanin FQ) opioid receptors. This yielded alignment with a Drosophila genomic database clone that contained a DNA sequence coding for a protein having, again, structural similarities with the rat galanin receptors. Using PCR with primers coding for the presumed exons of this second Drosophila receptor gene, 5'- and 3'-RACE, and Drosophila cDNA as template, we subsequently cloned the cDNA of this receptor. The receptor cDNA codes for a protein that is strongly related to the first Drosophila receptor (60% amino acid sequence identity in the transmembrane region; 47% identity in the overall sequence) and that is, therefore, most likely to be a second Drosophila allatostatin receptor (named DAR-2). The DAR-2 gene has three introns and four exons. Two of these introns coincide with two introns in the first Drosophila receptor (DAR-1) gene, and have the same intron phasing, showing that the two receptor genes are clearly evolutionarily related. The DAR-2 gene is located at the right arm of the third chromosome, position 98 D-E. This is the first report on the existence of two different allatostatin receptors in an animal.  相似文献   

17.
Reliable options to control the cabbage root fly, Delia radicum L., are lacking in many countries as restrictions on insecticide use have tightened due to environmental concerns. Although microbial control agents are often considered as a sustainable alternative, their application in agriculture is constrained by inconsistent efficacy owing to low field persistence. To stimulate naturally occurring beneficial microbes, soil amendment with the residual streams of insect production has been suggested as an alternative to synthetic fertilization and a new approach to microbial crop protection. In a set of greenhouse experiments, exuviae and frass of black soldier fly larvae, Hermetia illucens L., house crickets, Acheta domesticus L. and exuviae of mealworms, Tenebrio molitor L., were added to soil from an organically managed field. Exuviae and frass treatments were compared to treatments with synthetic fertilizer. Brussels sprouts, Brassica oleracea L., plants were grown in amended soil for 5 weeks before being infested with cabbage root fly larvae. Insect and plant performance were assessed by recording cabbage root fly survival, biomass and eclosion time and seed germination and plant biomass, respectively. Whereas soil amendment with black soldier fly frass or exuviae reduced cabbage root fly survival and biomass, respectively, amendment with house cricket or mealworm residual streams did not negatively affect root fly performance. Furthermore, seed germination was reduced in soil amended with house cricket exuviae, while amendment with either residual stream derived from black soldier fly larvae or house crickets resulted in lower plant shoot biomass compared with the synthetic fertilizer treatment. Amending soil with black soldier fly residual streams could become a novel and low-cost tool to be integrated in cabbage root fly management programmes, especially where methods currently available are insufficient. Therefore, the mechanisms underlying the effects of insect-derived soil amendments described here should be the focus of future research.  相似文献   

18.
Myoinhibitory neuropeptides in the American cockroach   总被引:8,自引:0,他引:8  
Predel R  Rapus J  Eckert M 《Peptides》2001,22(2):199-208
A large number of myostimulatory neuropeptides from neurohaemal organs of the American cockroach have been described since 1989. These peptides, isolated from the retrocerebral complex and abdominal perisympathetic organs, are thought to be released as hormones. To study the coordinated action of these neuropeptides in the regulation of visceral muscle activity, it might be necessary to include myoinhibitors as well, however, not a single myoinhibitory neuropeptide of the American cockroach has been described so far. To fill this gap, we describe the isolation of LMS (leucomyosuppressin) and Pea-MIP (myoinhibitory peptide) from neurohaemal organs of the American cockroach. LMS was very effective in inhibiting phasic activity of all visceral muscles tested. It was found in the corpora cardiaca of different species of cockroaches, as well as in related insect groups, including mantids and termites. Pea-MIP which is strongly accumulated in the corpora cardiaca was not detected with a muscle bioassay system but when searching for tryptophane-containing peptides using a diode-array detector. This peptide caused only a moderate inhibition in visceral muscle assays. The distribution of Pea-MIP in neurohaemal organs and cells supplying these organs with Pea-MIP immunoreactive material, is described. Additionally to LMS and Pea-MIP, a member of the allatostatin peptide family, known to exhibit inhibitory properties in other insects, was tested in visceral muscle assays. This allatostatin was highly effective in inhibiting spontaneous activity of the foregut, but not of other tested visceral muscles of the American cockroach.  相似文献   

19.
Activation of G protein-coupled receptors (GPCR) leads to the recruitment of beta-arrestins. By tagging the beta-arrestin molecule with a green fluorescent protein, we can visualize the activation of GPCRs in living cells. We have used this approach to de-orphan and study 11 GPCRs for neuropeptide receptors in Drosophila melanogaster. Here we verify the identities of ligands for several recently de-orphaned receptors, including the receptors for the Drosophila neuropeptides proctolin (CG6986), neuropeptide F (CG1147), corazonin (CG10698), dFMRF-amide (CG2114), and allatostatin C (CG7285 and CG13702). We also de-orphan CG6515 and CG7887 by showing these two suspected tachykinin receptor family members respond specifically to a Drosophila tachykinin neuropeptide. Additionally, the translocation assay was used to de-orphan three Drosophila receptors. We show that CG14484, encoding a receptor related to vertebrate bombesin receptors, responds specifically to allatostatin B. Furthermore, the pair of paralogous receptors CG8985 and CG13803 responds specifically to the FMRF-amide-related peptide dromyosuppressin. To corroborate the findings on orphan receptors obtained by the translocation assay, we show that dromyosuppressin also stimulated GTPgammaS binding and inhibited cAMP by CG8985 and CG13803. Together these observations demonstrate the beta-arrestin-green fluorescent protein translocation assay is an important tool in the repertoire of strategies for ligand identification of novel G protein-coupled receptors.  相似文献   

20.
The insect allatostatins obtained their names because they block the biosynthesis of juvenile hormone (a terpenoid) in the corpora allata (two endocrine organs near the insect brain). Chemically, the allatostatins can be subdivided into three different peptide groups: the A-type allatostatins, first discovered in cockroaches, which have the C-terminal sequence Y/FXFGLamide in common; the B-type allatostatins, first discovered in crickets, which all have the C-terminal sequence W(X)(6)Wamide; and the C-type allatostatins, first discovered in the moth Manduca sexta, which have an unrelated and nonamidated C terminus. We have previously reported the structure of an A-type allatostatin preprohormone from the fruitfly Drosophila melanogaster. Here we describe the molecular cloning of a B-type prepro-allatostatin from Drosophila (DAP-B). DAP-B is 211 amino acid residues long and contains one copy each of the following putative allatostatins: AWQSLQSSWamide (drostatin-B1), AWKSMNVAWamide (drostatin-B2), 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号