首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of thyrotropin releasing hormone (TRH) on changes in cortical concentrations of acetylcholine (ACh) and monoamines produced by concussion in mice. Concussion was induced by dropping a metal rod on the head, and the concentration of ACh, norepinephrine (NE), dopamine (DA) and serotonin (5-HT) in the cerebral cortex were measured by HPLC. We also examined the arousal effects of 0.5 mg/kg of TRH and 0.015 mg/kg of -pyro-2-aminoadipyl-histidyl-thiazolidine-4-carboxamide (MK-771), a TRH analogue, injected intraperitoneally 10 min before concussion, on neurotransmitter concentrations. Mice were sacrificed at 25 (representing the righting reflex time) and 210 s (representing spontaneous movement time). At 25 s after concussion, the concentration of ACh was significantly higher than in control mice, but pretreatment with TRH and MK-771 prevented the rise in ACh. In contrast, head injury significantly reduced NE concentration. TRH and MK-771 also prevented the fall in NE. Concussion did not change cortical concentrations of DA and 5-HT. Our results suggest that disturbances of consciousness produced by concussion may be due to increased ACh and diminished NE in the cerebral cortex. Our findings also suggest that the arousal effects of TRH on concussion-induced disturbances of consciousness are due to normalization of cortical cholinergic and noradrenergic neuronal systems.  相似文献   

2.
To examine the functional effects of cholinergic modulation compounds in oyster hearts and to explore their possible use in monitoring intoxication with acetylcholine-esterase (AChE) inhibitors such as organophosphates, tests were performed with in situ oyster heart preparations. The endogenous cholinergic agonist acetylcholine (ACh), AChE-resistant synthetic agonist carbachol, and the reversible carbamate type of AChE inhibitor physostigmine, all potently depressed spontaneous cardiac contractility. The depression was reversed by extensive washout, or prevented by muscarinic cholinergic antagonist atropine. The irreversible organophosphate type AChE inhibitor parathion or its active metabolite paraoxon at concentrations up to 100 microM failed to depress cardiac contractility. While other reversible AChE inhibitors such neostigmine and pyridostigmine also depressed the contractility, organophosphate AChE inhibitors malathion, diazinon, or phenthoate did not. Despite the differential effect in depressing cardiac function between the reversible and irreversible inhibitors, both of these inhibitors effectively inhibited cardiac AChE activity. The results suggest that the activation of muscarinic cholinergic receptors is coupled to inhibitory cardiac modulation, and organophosphate AChE inhibitors may inhibit only an AChE isozyme located at sites that are not important for control of cardiac activity in oysters.  相似文献   

3.
The beta-amyloid protein (Abeta) is the major protein component of amyloid plaques found in the Alzheimer brain. Although there is a loss of acetylcholinesterase (AChE) from both cholinergic and non-cholinergic neurones in the brain of Alzheimer patients, the level of AChE is increased around amyloid plaques. Previous studies using P19 cells in culture and transgenic mice which overexpress human Abeta have suggested that this increase may be due to a direct action of Abeta on AChE expression in cells adjacent to amyloid plaques. The aim of the present study was to examine the mechanism by which Abeta increases levels of AChE in primary cortical neurones. Abeta1-42 was more potent than Abeta1-40 in its ability to increase AChE in primary cortical neurones. The increase in AChE was unrelated to the toxic effects of the Abeta peptides. The effect of Abeta1-42 on AChE was blocked by inhibitors of alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) as well as by inhibitors of L- or N-type voltage-dependent calcium channels (VDCCs), whereas agonists of alpha7 nAChRs (choline, nicotine) increased the level of AChE. The results demonstrate that the effect of Abeta1-42 on AChE is due to an agonist effect of Abeta1-42 on the alpha7 nAChR.  相似文献   

4.
Acute effects of acephate (Ace) and methamidophos (Met) on acetylcholinesterase activity, endocrine system and amino acid concentrations were studied in rats. The rats were injected intraperitoneally with Ace (500 mg/kg) or Met (5 mg/kg) and then sacrificed at 15 or 60 min after the injection (A15 and A60 for Ace and M15 and M60 for Met). The primary aim of this study was to determine whether the mammalian toxicity of Ace is solely due to its conversion to Met or the protection of Ace against Met-inhibited AChE is also an important factor. The second aim of this study was to study the effects of Ace and Met on the endocrine system and amino acid concentrations and whether or not these effects correlate with AChE inhibition and Met accumulation. The Ace or Met injected animals did not exhibit the signs of organophosphate (OP) poisoning within 15 min after the injection, but exhibited tremors at 45 min after the injection. Blood and brain AChE activity in A15 and M15 rats exhibited 55 to 75% inhibition while the enzyme activity in A60 and M60 rats exhibited 80 to 95% inhibition. Ace was metabolized to Met in rats both in vivo and in vitro. A 5 rats had significantly higher Met concentration in their liver, brain and adrenal glands compared to M 5 rats, and A60 rats had significantly higher Met concentrations in their blood, liver, brain and adrenal glands compared to M60 rats. Thus, tissue Met concentrations in Ace-treated rats were significantly higher than in Met-treated rats and the inhibition of AChE activity was not consistent with the amount of metabolically formed Met, supporting the hypothesis that the Ace protection plays a role in the overall toxicity. Ace and Met both impaired circulating blood hormone and amino acid concentrations in rats. The endocrine effects of Ace and Met differed from their cholinergic effects, and were not proportional to the amount of Met present in different tissues obtained from the treatment groups. Plasma ACTH concentration was elevated in M60 rats but not in A60 rats. Thus, Ace may indirectly protect the pituitary against the toxic effects of Met. Unlike plasma ACTH levels, serum corticosterone and aldosterone levels were elevated in both A60 and M60 rats. Therefore, the effect of Met on the adrenal cortex may be mediated by the pituitary gland, while the effect of Ace may be due to direct Ace-gland interaction. The decrease in the levels of some of the serum amino acids showed an increase in the energy demands in the treatment groups.  相似文献   

5.
目的:探究ZLA对神经元型AChE的抑制活性及其对中枢胆碱能神经功能障碍导致的学习记忆功能减退的改善作用。方法:通过体外实验观察ZLA对神经元型AChE活性的影响;通过ex vivo实验观察ZLA体内AChE抑制活性;利用Morris水迷宫行为学实验探讨ZLA对东莨菪碱诱发的小鼠学习记忆功能障碍的改善作用。结果:ZLA明显抑制人SH-SY5Y神经元细胞和小鼠海马神经元来源的AChE活性。另外,ZLA腹腔注射后以剂量依赖性方式抑制小鼠脑内AChE活性。Morris水迷宫实验结果显示,ZLA显著改善东莨菪碱引起的学习和记忆功能障碍。结论:ZLA能够抑制神经元型AChE活性并具有促智作用。  相似文献   

6.
P D Butler  R J Bodnar 《Peptides》1987,8(2):299-307
In addition to short-acting analgesic actions by itself and modulation of analgesic responses induced by endogenous opioids and neurotensin, central administration of thyrotropin-releasing hormone (TRH) potentiates footshock analgesia. The present study evaluated the effects of TRH upon the neurohormonally-mediated though nonopioid analgesia induced by swims in rats. Intracerebroventricular TRH (10 and 50 micrograms) dose-dependently potentiated swim (21, 15, 2 degrees C baths) analgesia on the tail-flick test, an effect which was not due to the hypothermic or basal pain threshold changes. Intravenous (8 mg/kg) TRH potentiated swim (21 degrees C) analgesia; the 600:1 difference in potency between routes strongly suggests central sites of neuromodulatory action. Intracerebroventricular diketopiperazine (50 micrograms), a TRH metabolite, and RX77368 (50 micrograms), a TRH analogue, also potentiated swim (21 degrees C) analgesia, effects also independent of hypothermia and basal reactivity to pain. Finally, given the excitatory interaction between TRH and acetylcholine as well as the cholinergic involvement in swim analgesia, intracerebroventricular TRH potentiated pilocarpine (10 mg/kg, IP) analgesia.  相似文献   

7.
gamma-Aminobutyric acid (GABA) was applied to the superior cervical ganglion (SCG) of CFY rats in vitro and in vivo, with or without implantation of a hypoglossal nerve, to evaluate the effects of these experimental interventions on the acetylcholine (ACh) system, which mainly serves the synaptic transmission of the preganglionic input. Long-lasting GABA microinfusion into the SCG in vivo apparently resulted in a "functional denervation." This treatment reduced the acetylcholinesterase (AChE; EC 3.1.1.7) activity by 30% (p less than 0.01) and transiently increased the number of nicotinic acetylcholine receptors, but had no significant effect on the choline acetyltransferase (acetyl-coenzyme A:choline-O-acetyltransferase; EC 2.3.1.6) activity, the ACh level, or the number of muscarinic acetylcholine receptors. The relative amounts of the different molecular forms of AChE did not change under these conditions. In vivo GABA application to the SCG with a hypoglossal nerve implanted in the presence of intact preganglionic afferent synapses exerted a significant modulatory effect on the AChE activity and its molecular forms. The "hyperinnervation" of the ganglia led to increases in the AChE activity (to 142.5%, p less than 0.01) and the 16S molecular form (to 200%, p less than 0.01). It is concluded that in vivo GABA microinfusion and GABA treatment in the presence of additional cholinergic synapses has a modulatory effect on the elements of the ACh system in the SCG of CFY rats.  相似文献   

8.
K Matsui  K Ando 《Jikken dobutsu》1984,33(4):465-469
Antiataxic mechanisms were investigated in Rolling mouse Nagoya (RMN). The present study was to elucidate the influence of dopaminergic (pimozide, apomorphine) and cholinergic (atropine, physostigmine) drugs on the antiataxic effect of TRH. The degree of ataxic gait and spontaneous motor activities in RMN were measured by the open field method and ANIMEX-II Pretreatment with pimozide and apomorphine had no influence on the antiataxic effects of TRH, while pretreatment with physostigmine suppressed these effects and in contrast, with atropine, increased then. The increase of spontaneous motor activities after TRH injection was antagonized by pretreatment with pimozide and physostigmine, but accentuated by pretreatment with atropine. These results may indicate that the antiataxic effects of TRH are, at least partially, mediated by the cholinergic mechanism.  相似文献   

9.
Fasciculin II, a potential inhibitor of acetylcholinesterase (AChE), was tested on two types of Aplysia cholinergic receptors: H type, opening Cl- channels; and D type, opening cationic channels. Evoked postsynaptic inhibitory responses and responses to ionophoretic application of acetylcholine (ACh) or carbachol onto H-type receptors were potentiated in the presence of fasciculin II at 10(-9) M, whereas the same concentration of this drug was without effect on the evoked postsynaptic excitatory responses or on the application of ACh or carbachol on D-type receptors. The observed effects of fasciculin II were identical to those obtained with other inhibitors of AChE on the same preparation. The facilitatory effect on the carbachol response in H-type cells indicates that fasciculin II, as other AChE inhibitors, does not act on H-type synapses solely by blocking the hydrolysis of ACh. We concluded that fasciculin II was a good inhibitor of acetylcholinesterase on neuronal preparations in vivo. The results are further discussed as a new element in favor of a previously proposed hypothesis of a molecular interaction between AChE and ACh H-type receptors.  相似文献   

10.
Central cholinergic systems are involved in a plethora of brain functions and are severely and selectively damaged in neurodegenerative diseases such as Alzheimer's disease and dementia with Lewy bodies. Cholinergic dysfunction is treated with inhibitors of acetylcholinesterase (AChE) while the role of butyrylcholinesterase (BChE) for brain cholinergic function is unclear. We have used in vivo microdialysis to investigate the regulation of hippocampal acetylcholine (ACh) levels in mice that are devoid of AChE (AChE-/- mice). Extracellular ACh levels in the hippocampus were 60-fold elevated in AChE-/- mice compared with wild-type (AChE+/+) animals. In AChE-/- mice, calcium-free conditions reduced hippocampal ACh levels by 50%, and infusion of tetrodotoxin by more than 90%, indicating continuous ACh release. Infusion of a selective AChE inhibitor (BW284c51) caused a dose-dependent, up to 16-fold increase of extracellular ACh levels in AChE+/+ mice but did not change ACh levels in AChE-/- mice. In contrast, infusion of a selective inhibitor of BChE (bambuterol) caused up to fivefold elevation of ACh levels in AChE-/- mice, but was without effect in AChE+/+ animals. These results were corroborated with two other specific inhibitors of AChE and BChE, tolserine and bis-norcymserine, respectively. We conclude that lack of AChE causes dramatically increased levels of extracellular ACh in the brain. Importantly, in the absence of AChE, the levels of extracellular ACh in the brain are controlled by the activity of BChE. These results point to a potential usefulness of BChE inhibitors in the treatment of central cholinergic dysfunction in which brain AChE activity is typically reduced.  相似文献   

11.
Purified C-reactive protein (CRP) diminished effects of acetylcholine (ACh) on the vascular tone and the heart rate of rats in vivo. In vitro CRP inhibited breakdown of ACh by acetylcholinesterase (AChE) while did not interact with AChE itself. CRP appears to bind ACh. CRP did not modify the cardiovascular effects of adenosine, another vasorelaxant. The data suggest that there is a new line of cross-talk between the inflammation and cholinergic regulation with CRP acting on endothelium via the ACh-dependent pathway.  相似文献   

12.
Summary The autonomic innervation of the mouse gallbladder mucosa was studied using histo-and cytochemical methods. In a light microscopic investigation the distribution of acetylcholinesterase (AChE) activity and formaldehyde-induced fluorescence was studied histochemically. Nerve fibres and small varicosities showed concentrations of AChE activity very close to the epithelium in the subepithelial connective tissue. No adrenergic nerves were observed in the mucosa.When using the electron microscope and employing the potassium permanganate fixation/staining technique only one sort of axonal enlargement was encountered, viz. the cholinergic type. These varicosities contained numerous agranular vesicles (500–600 Å in diameter). No varicosities of the adrenergic (dense-cored vesicles) type were observed.Signs of increased secretory activity in the epithelium were observed in the first few minutes after cholinergic stimulation. After repeated in vivo stimulation, there was an almost total depletion of glycoprotein granules, best seen when using the cytochemical PA-CrA-silver technique. The findings suggest that the subepithelial connective tissue and the epithelium of the mouse gallbladder mucosa have a cholinergic innervation.  相似文献   

13.
The autonomic innervation of the mouse gallbladder mucosa was studied using histo- and cytochemical methods. In a light microscopic investigation the distribution of acetylcholinesterase (AChE) activity and formaldehyde-induced fluorescence was studied histochemically. Nerve fibres and small varicosities showed concentrations of AChE activity very close to the epithelium in the subepithelial connective tissue. No adrenergic nerves were observed in the mucosa. When using the electron microscope and employing the potassium permanganate fixation/staining technique only one sort of axonal enlargement was encountered, viz. the cholinergic type. These varicosities contained numerous agranular vesicles (500-600 A in diameter). No varicosities of the adrenergic (dense-cored vesicles) type were observed. Signs of increased secretory activity in the epithelium were observed in the first few minutes after cholinergic stimulation. After repeated in vivo stimulation, there was an almost total depletion of glycoprotein granules, best seen when using the cytochemical PA-CrA-silver technique. The findings suggest that the subepithelial connective tissue and the epithelium of the mouse gallbladder mucosa have a cholinergic innervation.  相似文献   

14.
C Okuda  T Mizobe  M Miyazaki 《Life sciences》1987,40(13):1293-1299
Intracerebroventricular (i.c.v.) administration of thyrotropin-releasing hormone (TRH) in a range from 0.1 to 100 micrograms induced a dose-related increase in blood pressure in conscious rats, whereas TRH-free acid (TRH-OH) and histidyl-proline diketopiperazine (His-Pro-DKP), metabolites of TRH, did not. The blood pressure responses to intravenous (i.v.) injection of 5 mg/Kg TRH were similar to those induced by TRH (i.c.v.). Pretreatment with atropine (50 micrograms, i.c.v.) significantly reduced the pressor effect of TRH administered through either route. Hemicholinium-3 (50 micrograms, i.c.v.), an inhibitor of choline uptake, also prevented the increase in blood pressure induced by TRH (10 micrograms, i.c.v.). These results indicate that both centrally and peripherally administered TRH have pressor effects that are mediated by central cholinergic mechanisms, probably by activating cholinergic neurons.  相似文献   

15.
The influence of trimethyl tin (TMT) intoxication on muscarinic cholinergic receptors and histochemistry of acetylcholinesterase (AChE) in the rat brain 21 days after treatment was studied. The topographical distribution and reduction in muscarinic receptor sites were analysed by means of quantitative receptor autoradiography using [3H]quinuclidinyl benzilate (QNB). TMT treatment produced a decrease in cholinergic receptors in a large number of brain regions.

The quantitative distribution of AChE was examined in over 60 regions following TMT intoxication. The activity of AChE was significantly affected. Reduced AChE content was found in several brain regions following TMT intoxication. The effect on AChE content was confined to cholinergic terminal areas, e.g. the hippocampus, while in the area dentata a significant increase in AChE content was detected.

The results are interpreted in terms of TMT producing disruption of the cholinergic system with implications for a neuroanatomical basis of impaired memory mechanisms.  相似文献   


16.
Thyroliberin (TRH) influence on microviscosity and thermoinduced structural transitions of biological membranes has been studied using spin probes and ESR technique. It was shown that TRH in three investigated concentrations (10(-6), 10(-10) and 10(-16) mol/l) in vivo resulted in increasing of the lipid microviscosity in the hydrophobic areas (20 A): the time of rotary correlation of 16-doxyl-stearic acid elevated by 17-50%. There were no statistically significant effects in the regions localized more close to the surface (8 A): the order parameter of 5-doxyl-stearic acid was not changed. The picture of thermoinduced structural transitions in described in this article. Under the action of TRH in vivo both the shift of structural transitions and the changes in their number have been observed. The results obtained indicated that the mechanism of the TRH effect has a non-receptor component.  相似文献   

17.
N-tert-butyl-alpha-phenylnitrone (PBN), a widely used nitrone-based free radical trap was recently shown to prevent acetylcholinesterase (AChE) inhibitors induced muscle fasciculations and brain seizures while being ineffective against glutamergic or cholinergic receptor agonist induced seizures. In the present study we compared the effects on AChE activity of four free radical spin traps PBN, alpha-(4-pyridil-1)-N-tert-butyl nitrone (POBN), N-tert-butyl-alpha-(2-sulfophenyl)-nitrone (S-PBN) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO). The kinetics of AChE inhibition were studied in vitro using a spectrophotometric kinetic assay with AChE from rat brain, diaphragm, electric eel and mouse brain. Spin trapping compounds S-PBN and DEPMPO, in concentrations up to 3 mM did not inhibit hydrolysis of ACh, while PBN and POBN inhibited hydrolysis of ACh in a reversible and concentration-dependent manner. Double reciprocal plots of the reaction velocity against varying ACh concentrations at each inhibitor concentration were linear and generally indicated mixed type inhibition. PBN was the most potent inhibitor of mouse AChE with Ki and Ki' of 0.58 and 2.99 mM, respectively, and the weakest inhibitor of electric eel AChE. In contrast, POBN showed the highest affinity for electric eel enzyme, with Ki and Ki' values of 1.065 and 3.15 mM, respectively. These findings suggest that the effect of PBN and POBN on AChE activity does not depend on trapping of damaging reactive oxygen and that in addition to their antioxidant action other pharmacological effects of these compounds should be considered when neuroprotective actions of PBN or POBN are investigated.  相似文献   

18.
The effects of synthetic somatostatin (SRIF) on serum growth hormone (GH) concentrations stimulated by exogenous administration of synthetic thyrotropin-releasing hormone (TRH) and/or human pancreatic GH-releasing factor (hpGRF) were investigated in 4-week-old cockerels. In addition, the additive effects of TRH and hpGRF on serum GH were examined. TRH and hpGRF, when given in combination intravenously, produced an additive effect on serum GH concentration that peaked 10 min after the injection. The somatostatin did not significantly affect basal GH concentrations when given alone, but did significantly decrease the magnitude of the GH response to hpGRF. In contrast, SRIF did not significantly decrease the stimulatory effects of TRH on GH release. These results suggest that TRH and hpGRF are potent GH releasers in vivo and that their stimulating effects on GH release are additive, suggesting different mechanisms for their stimulation. The results obtained from the combination studies suggest that the main site of the stimulatory action of hpGRF is at the pituitary, and that SRIF significantly inhibited the rise in serum GH induced by a synthetic hpGRF, but not that induced by TRH.  相似文献   

19.
The effects of a new thyrotropin releasing hormone (TRH) analogue, YM-14673 (N alpha-[[(S)-4-oxo-2-azetidinyl]carbonyl]-L-histidyl-L-prolinamide dihydrate), on the release of acetylcholine (ACh) in free-moving rats were examined in vivo by intracerebral dialysis. In the frontal cortex, YM-14673 (0.1-0.3 mg/kg) caused a significant dose-dependent increase in the extracellular levels of ACh, suggesting that YM-14673 stimulated the ACh release. These actions of YM-14673 were about 50 times more potent than those of TRH. On the other hand, extracellular levels of ACh in caudate nucleus were not changed following injection of YM-14673 even at 3 mg/kg. TRH and methamphetamine also increased the release of ACh in frontal cortex. Haloperidol prevented the increase in the methamphetamine-induced release of ACh, whereas the increased release of ACh produced by YM-14673 was partially antagonized by haloperidol. These results suggest that the dopaminergic system affects the facilitatory effects on the ACh release in the frontal cortex and that the stimulatory effect of YM-14673 on the frontal cholinergic neurons is partially mediated by dopaminergic neurons.  相似文献   

20.
Cholinesterases: New Roles in Brain Function and in Alzheimer's Disease   总被引:15,自引:0,他引:15  
The most important therapeutic effect of cholinesterase inhibitors (ChEI) on approximately 50% of Alzheimer's disease (AD) patients is to stabilize cognitive function at a steady level during a 1-year period of treatment as compared to placebo. Recent studies show that in a certain percentage (approximately 20%) of patients this cognitive stabilizing effect can be prolonged up to 24 months. This long-lasting effect suggests a mechanism of action other than symptomatic and cholinergic. In vitro and in vivo studies have consistently demonstrated a link between cholinergic activation and APP metabolism. Lesions of cholinergic nuclei cause a rapid increase in cortical APP and CSF. The effect of such lesions can be reversed by ChEI treatment. Reduction in cholinergic neurotransmission–experimental or pathological, such as in AD–leads to amyloidogenic metabolism and contributes to the neuropathology and cognitive dysfunction. To explain the long-term effect of ChEI, mechanisms based on -amyloid metabolism are postulated. Recent data show that this mechanism may not necessarily be related to cholinesterase inhibition. A second important aspect of brain cholinesterase function is related to enzymatic differences. The brain of mammals contains two major forms of cholinesterases: acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The two forms differ genetically, structurally, and for their kinetics. Butyrylcholine is not a physiological substrate in mammalian brain, which makes the function of BuChE of difficult interpretation. In human brain, BuChE is found in neurons and glial cells, as well as in neuritic plaques and tangles in AD patients. Whereas, AChE activity decreases progressively in the brain of AD patients, BuChE activity shows some increase. To study the function of BuChE, we perfused intracortically the rat brain with a selective BuChE inhibitor and found that extracellular acetylcholine increased 15-fold from 5 nM to 75 nM concentrations with little cholinergic side effect in the animal. Based on these data and on clinical data showing a relation between cerebrospinal fluid (CSF) BuChE inhibition and cognitive function in AD patients, we postulated that two pools of cholinesterases may be present in brain, the first mainly neuronal and AChE dependent and the second mainly glial and BuChE dependent. The two pools show different kinetic properties with regard to regulation of ACh concentration in brain and can be separated with selective inhibitors. Within particular conditions, such as in mice nullizygote for AChE or in AD patients at advanced stages of the disease, BuChE may replace AChE in hydrolizing brain acetylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号