首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out.

Methodology/Principal Findings

Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism.

Conclusions

The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.  相似文献   

2.
Obesity and metabolic disorders caused by alterations in lipid metabolism are major health issues in developed, affluent societies. Adipose tissue is the only organ that stores lipids and prevents lipotoxicity in other organs. Mature adipocytes can affect themselves and distant metabolism-related tissues by producing various adipokines, including adiponectin and leptin. The engulfment adaptor phosphotyrosine-binding domain-containing 1 (GULP1) regulates intracellular trafficking of glycosphingolipids and cholesterol, suggesting its close association with lipid metabolism. However, the role of GULP1 in adipocytes remains unknown. Therefore, this study aimed to investigate the function of GULP1 in adipogenesis, glucose uptake, and the insulin signaling pathway in adipocytes. A 3T3-L1 cell line with Gulp1 knockdown (shGulp1) and a 3T3-L1 control group (U6) were established. Changes in shGulp1 cells due to GULP1 deficiency were examined and compared to those in U6 cells using microarray analysis. Glucose uptake was monitored via insulin stimulation in shGulp1 and U6 cells using a 2-NBDG glucose uptake assay, and the insulin signaling pathway was investigated by western blot analysis. Adipogenesis was significantly delayed, lipid metabolism was altered, and several adipogenesis-related genes were downregulated in shGulp1 cells compared to those in U6 cells. Microarray analysis revealed significant inhibition of peroxisome proliferator-activated receptor signaling in shGulp1 cells compared with U6 cells. The production and secretion of adiponectin as well as the expression of adiponectin receptor were decreased in shGulp1 cells. In particular, compared with U6 cells, glucose uptake via insulin stimulation was significantly decreased in shGulp1 cells through the disturbance of ERK1/2 phosphorylation. This is the first study to identify the role of GULP1 in adipogenesis and insulin-stimulated glucose uptake by adipocytes, thereby providing new insights into the differentiation and functions of adipocytes and the metabolism of lipids and glucose, which can help better understand metabolic diseases.  相似文献   

3.

Aims

Obesity and type 2 diabetes are characterised by low-grade inflammation, metabolic endotoxaemia (i.e., increased plasma lipopolysaccharides [LPS] levels) and altered endocannabinoid (eCB)-system tone. The aim of this study was to decipher the specific role of eCB-system stimulation or metabolic endotoxaemia in the onset of glucose intolerance, metabolic inflammation and altered lipid metabolism.

Methods

Mice were treated with either a cannabinoid (CB) receptor agonist (HU210) or low-dose LPS using subcutaneous mini-pumps for 6 weeks. After 3 weeks of the treatment under control (CT) diet, one-half of each group of mice were challenged with a high fat (HF) diet for the following 3-week period.

Results

Under basal conditions (control diet), chronic CB receptor agonist treatment (i.e., 6 weeks) induced glucose intolerance, stimulated metabolic endotoxaemia, and increased macrophage infiltration (CD11c and F4/80 expression) in the muscles; this phenomenon was associated with an altered lipid metabolism (increased PGC-1α expression and decreased CPT-1b expression) in this tissue. Chronic LPS treatment tended to increase the body weight and fat mass, with minor effects on the other metabolic parameters. Challenging mice with an HF diet following pre-treatment with the CB agonist exacerbated the HF diet-induced glucose intolerance, the muscle macrophage infiltration and the muscle''s lipid content without affecting the body weight or the fat mass.

Conclusion

Chronic CB receptor stimulation under basal conditions induces glucose intolerance, stimulates metabolic inflammation and alters lipid metabolism in the muscles. These effects worsen following the concomitant ingestion of an HF diet. Here, we highlight the central roles played by the eCB system and LPS in the pathophysiology of several hallmarks of obesity and type 2 diabetes.  相似文献   

4.
Autoimmune destruction of cells in the pancreas leads to type I, or insulin dependent diabetes mellitus (IDDM), through the loss of endogenous insulin production capacity. This paper describes an attempt to generate artificial cells using the fibroblast cell line BHK21. Stable transfectants expressing the human preproinsulin (PPI) gene were isolated and characterised. The resulting clone selected for further analysis (BHK-PPI-C16) was capable of secreting 0.12 pmol proinsulin/hr/105 cells and maintained a steady cellular proinsulin content of 0.36 ± 0.04 pmol l–1. There was no processing of the proinsulin to mature insulin. The cells were unresponsive to glucose but there was increased proinsulin secretion in the presence of agents that stimulated formation of intracellular cAMP. Transfection of cDNAs for the key elements of the glucose sensing apparatus (GLUT2 and glucokinase) led to a subphysiological stimulation of secretion when glucokinase was transfected alone while there was a complete loss of insulin secretion when both components were overexpressed. The deleterious effect on proinsulin secretion observed upon co-expression of the glucose sensing genes may have implications for applications requiring multigene expression in BHK21 cells.  相似文献   

5.
6.
The effect of hypoxia on circulatory levels of insulin, its response to oral glucose administration (100 g) and changes in circadian rhythms of glucose as well as insulin were evaluated in euglycemic males at sea level (SL, 220 m) during their stay at high altitude (3500 m, SJ) and in high altitude natives (HAN).Basal glucose levels were not altered at high altitude but the rise in glucose ( glucose) after glucose load was significantly higher in SJ and HAN (p<0.01) as compared to SL values. An increase (p<0.01) both in basal as well as glucose induced rise in insulin secretion ( insulin) was observed at HA. The rise in insulin in SJ was significantly higher (p<0.01) than in HAN. This elevation in glucose and insulin levels was also evident at different times of the day. The circadian rhythmicity of glucose as well as insulin was altered by the altitude stress. The findings of the study show a rise in insulin level at HA but the hyperglycemia in the face of hyper-insulinism require the presumption of a simultaneous and dispropotionate rise of insulin antagonistic hormones upsetting the effect of insulin on glucose metabolism.Presented at International Conference of Biometeorology held at New Delhi from December 26–30, 1983.  相似文献   

7.
Endocrine cell cultures have potential in bioprocessing, for the production of biologically active hormones, and in tissue engineering, for the development of implantable artificial tissues for long-term restoration of endocrine function. To optimize such systems, it is necessary to develop a thorough understanding of how inherently present environmental stresses, such as nutrient depletion and metabolite accumulation, affect the cells. This work focuses on the effects of the metabolite ammonium on indicators of endocrine cell metabolism and on the processing, storage and secretion of regulated secretory proteins. Experiments were conducted on recombinant insulin-producing mouse pituitary AtT-20 cells and mouse insulinoma TC3 cells. Exposure for 24–48 hours to 6 mM of exogenous ammonium resulted in higher rates of glucose consumption by both AtT-20 and TC3 cells, while the formation of additional ammonium generally decreased relative to ammonium-free controls. When TC3 cells were discharged of their intracellular insulin stores, the presence of ammonium during a subsequent recharge completely inhibited addition of new insulin-related peptides to the stores, as we had observed previously for both cell lines. There was a correlation between insulin-related peptides stored in TC3 cells during recharging and the amount that could be released upon secretagogue stimulation. Using a combination of radioimmunoassay and high performance liquid chromatography, we found that intracellular insulin and insulin-related peptides changed in the same fashion. Intracellular mechanisms that may be producing the observed results are discussed.Abbreviations IRP insulin-related peptides - HPLC high performance liquid chromatography - DAMP 3-(2,4-dinitroanilino)-3 amino-N-methyldipropylamine  相似文献   

8.
Caveolin-3 (Cav-3) is expressed predominantly in skeletal muscle fibers, where it drives caveolae formation at the muscle cell's plasma membrane. In vitro studies have suggested that Cav-3 may play a positive role in insulin signaling and energy metabolism. We directly address the in vivo metabolic consequences of genetic ablation of Cav-3 in mice as it relates to insulin action, glucose metabolism, and lipid homeostasis. At age 2 mo, Cav-3 null mice are significantly larger than wild-type mice, and display significant postprandial hyperinsulinemia, whole body insulin resistance, and whole body glucose intolerance. Studies using hyperinsulinemic-euglycemic clamps revealed that Cav-3 null mice exhibited 20% and 40% decreases in insulin-stimulated whole body glucose uptake and whole body glycogen synthesis, respectively. Whole body insulin resistance was mostly attributed to 20% and 40% decreases in insulin-stimulated glucose uptake and glucose metabolic flux in the skeletal muscle of Cav-3 null mice. In addition, insulin-mediated suppression of hepatic glucose production was significantly reduced in Cav-3 null mice, indicating hepatic insulin resistance. Insulin-stimulated glucose uptake in white adipose tissue, which does not express Cav-3, was decreased by 70% in Cav-3 null mice, suggestive of an insulin-resistant state for this tissue. During fasting, Cav-3 null mice possess normal insulin receptor protein levels in their skeletal muscle. However, after 15 min of acute insulin stimulation, Cav-3 null mice show dramatically reduced levels of the insulin receptor protein, compared with wild-type mice treated identically. These results suggest that Cav-3 normally functions to increase the stability of the insulin receptor at the plasma membrane, preventing its rapid degradation, i.e., by blocking or slowing ligand-induced receptor downregulation. Thus our results demonstrate the importance of Cav-3 in regulating whole body glucose homeostasis in vivo and its possible role in the development of insulin resistance. These findings may have clinical implications for the early diagnosis and treatment of caveolinopathies. limb girdle muscular dystrophy; glucose intolerance; hyperinsulinemia; insulin receptor degradation  相似文献   

9.
Insulin receptor signal transduction depends on the precise intracellular localization of signalling molecules. This study examines the compartmentalization and the insulin-induced translocation and tyrosine phosphorylation of insulin receptor substrates (IRS-1 and IRS-3) in epididymal white adipose tissue from adult and insulin-resistant old rats. We found that insulin induces the translocation of IRS-1 from plasma membrane (PM) and light microsomes (LM) to cytosol, whereas IRS-3 translocates from PM to LM and cytosol upon insulin stimulation. Old rat adipocytes are characterized by higher relative levels of IRS proteins, under basal conditions, in those fractions where they are intended to translocate in response to insulin and exhibit a higher phosphotyrosine content of IRS-1 and -3 in basal conditions and a lower maximal phosphorylation in response to insulin. Furthermore, old rat adipocytes are also characterized by a reduced ability of insulin to stimulate both, Akt/PKB activity and translocation of GLUT4 to the PM. We conclude that the lower stimulation of downstream insulin signalling involved in glucose metabolism in old rat adipocytes may be explained, at least in part, by the altered subcellular distribution of IRS-1 and -3 proteins. In addition, our data suggest that the mechanism of turning on/off insulin receptor-mediated signal is impaired with aging.  相似文献   

10.

Aims/hypothesis

The actions of peripherally administered nesfatin-1 on glucose homeostasis remain controversial. The aim of this study was to characterize the mechanisms by which peripheral nesfatin-1 regulates glucose metabolism.

Methods

The effects of nesfatin-1 on glucose metabolism were examined in mice by continuous infusion of the peptide via osmotic pumps. Changes in AKT phosphorylation and Glut4 were investigated by Western blotting and immnuofluorescent staining. Primary myocytes, adipocytes and hepatocytes were isolated from male mice.

Results

Continuous peripheral infusion of nesfatin-1 altered glucose tolerance and insulin sensitivity in mice fed either normal or high fat diet, while central administration of nesfatin-1 demonstrated no effect. Nesfatin-1 increases insulin secretion in vivo, and in vitro in cultured min6 cells. In addition, nesfatin-1 up-regulates the phosphorylation of AKT in pancreas and min6 islet cells. In mice fed normal diet, peripheral nesfatin-1 significantly increased insulin-stimulated phosphorylation of AKT in skeletal muscle, adipose tissue and liver; similar effects were observed in skeletal muscle and adipose tissue in mice fed high fat diet. At basal conditions and after insulin stimulation, peripheral nesfatin-1 markedly increased GLUT4 membrane translocation in skeletal muscle and adipose tissue in mice fed either diet. In vitro studies showed that nesfatin-1 increased both basal and insulin-stimulated levels of AKT phosphorylation in cells derived from skeletal muscle, adipose tissue and liver.

Conclusions

Our studies demonstrate that nesfatin-1 alters glucose metabolism by mechanisms which increase insulin secretion and insulin sensitivity via altering AKT phosphorylation and GLUT 4 membrane translocation in the skeletal muscle, adipose tissue and liver.  相似文献   

11.
We have examined the expression and activity of inducible nitric oxide synthase (iNOS) and the activity of neuronal constitutive NOS (ncNOS) in isolated rat pancreatic islets, stimulated by a hyperglycaemic concentration of glucose, and whether the NOS activities could be modulated by activation of the cyclic AMP/protein kinase A (cyclic AMP/PKA) system in relation to the insulin secretory process. Here, we show that glucose stimulation (20 mmol/l) induces iNOS and increases ncNOS activity. No iNOS is detectable at basal glucose levels (3.3 mmol/l). The addition of glucagon-like-peptide 1 (GLP-1) or dibutyryl-cAMP to islets incubated with 20 mmol/l glucose results in a marked suppression of iNOS expression and activity, a reduction in ncNOS activity and increased insulin release. The GLP-1-induced suppression of glucose-stimulated iNOS activity and expression and its stimulation of insulin release is, at least in part, PKA dependent, since the PKA inhibitor H-89 reverses the effects of GLP-1. These observations have been confirmed by confocal microscopy showing the glucose-stimulated expression of iNOS, its suppression by GLP-1 and its reversion by H-89 in -cells. We have also found that the NO scavenger cPTIO and the NOS inhibitor L-NAME potentiate the insulin response to glucose, again suggesting that NO is a negative modulator of glucose-stimulated insulin release. We conclude that the induction of iNOS and the increase in ncNOS activity caused by glucose in rat islets is suppressed by the cyclic AMP/PKA system. The inhibition of iNOS expression by the GLP-1/cyclic AMP/PKA pathway might possibly be of therapeutic potential in NO-mediated -cell dysfunction and destruction.  相似文献   

12.
Insulin selectively induces mitogenesis in quiescent SV40 large T antigen-transformed murine 3T3T (CSV3-1) cells but not in quiescent nontransformed 3T3T cells. This mitogenic effect induced by insulin in CSV3-1 cells requires an induction of AP-1 activity associated with c-Jun and JunB. To further investigate the mechanisms that are involved in insulin-induced mitogenesis in CSV3-1 cells, the current experiments were performed. The results show that following insulin stimulation, the insulin receptor -subunit and the insulin receptor substrate-1 undergo a much more significant tyrosine phosphorylation in CSV3-1 cells than in 3T3T cells. Insulin also induces tyrosine phosphorylation of a 73 kDa protein that is coprecipitated with the tyrosine-phosphorylated insulin receptor in CSV3-1 cells but not in 3T3T cells. The increased tyrosine phosphorylation in response to insulin stimulation in CSV3-1 cells does not appear to be due to an increase in the level of expression of the insulin receptor and does not appear to result from a significant change in tyrosine phosphatase activity compared to nontransformed cells. The results also show that the insulin effect in CSV3-1 cells is not mediated by insulin-like growth factor 1 receptor because insulin at the concentrations that induce mitogenesis does not increase the tyrosine phosphorylation of the insulin-like growth factor 1 receptor and the expression level of the receptor is not significantly changed in CSV3-1 cells compared to nontransformed cells. These data together indicate that the selective mitogenic effect of insulin on CSV3-1 cells involves increased tyrosine phosphorylation of the insulin receptor, the insulin receptor substrate-1 and the 73 kDa protein, although the underlying mechanisms need to be further elucidated.  相似文献   

13.
Glucose uptake, glut 4 translocation and activation of protein kinase B were measured in Langendorff perfused hearts from (i) Wistar control, (ii) lean, neonatal Streptozotocin induced (Stz) and (iii) Zucker (fa/fa) obese diabetic rats of 10–12 weeks old. Hearts were subjected to stimulation with insulin, isoproterenol (-adrenergic agonist) or a combination of insulin and isoproterenol, during the perfusion protocol. Basal myocardial glucose uptake was impaired in both diabetic models, but could be stimulated significantly by insulin. In the Zucker rats, the time-course of insulin action was delayed. Insulin and -stimulation of glucose uptake were not additive. Evaluation of sarcolemmal membranes from these hearts showed that the affinity of glut 4 was significantly lower in the Zucker but not in the Stz hearts while a reduced affinity found with a combination of insulin and -stimulation in control hearts, was absent in both diabetic models. Total membrane lysates were analyzed for glut 4 expression while an intracellular component was generated to quantify translocation on stimulation as well as activity of protein kinase B (PKB). At this age, the neonatal Streptozotocin induced diabetic animals presented with more faulty regulation concerning adrenergic stimulated effects on elements of this signal transduction pathway while the Zucker fa/fa animals showed larger deviations in insulin stimulated effects. The overall response of the Zucker myocardium was poorer than that of the Stz group. No significant modulation of -adrenergic signaling on insulin stimulated glucose uptake was found. The PI-3-kinase inhibitor wortmannin, could abolish glucose uptake as well as PKB activation elicited by both insulin and isoproterenol.  相似文献   

14.
Insulin and insulin-like growth factor (IGF)-I inhibit intracellular protein degradation in a variety of different cell types. In the present studies, the IGF-I-induced inhibition of protein metabolism in Chinese hamster ovary (CHO) cells was found to be blocked by polyclonal antibodies to the IGF-II/mannose-6-phosphate phosphate (Man-6-P) receptor, but not by control immunoglobulin. In contrast, these antibodies had no effect on the ability of IGF-I to stimulate glucose uptake in the same cells. The antibodies to the IGF-II/Man-6-P receptor also inhibited the effect of IGF-I and insulin on protein catabolism in human foreskin fibroblasts and human hepatoma cells, respectively. Moreover, CHO cells overexpressing a cDNA coding for the IGF-II/Man-6-P receptor were found to exhibit an increased effect of insulin on protein catabolism. In contrast, the insulin stimulation of glucose uptake is the same in these transfected cells as in the parental CHO cells. These results implicate the IGF-II/Man-6-P receptor in the insulin- and IGF-I-induced inhibition of protein catabolism.  相似文献   

15.
It has previously been shown that phenylarsine oxide (PhAsO), an inhibitor of protein internalization, also inhibits stereospecific uptake of D-glucose and 2-deoxyglucose in both basal and insulin-stimulated rat adipocytes. This inhibition of hexose uptake was found to be dose-dependent. PhAsO rapidly inhibited sugar transport into insulin-stimulated adipocytes, but at low concentrations inhibition was transient. Low doses of PhAsO (1 microM) transiently inhibit stereospecific hexose uptake and near total (approx. 90%) recovery of transport activity occurs within 20 min. Interestingly, once recovered, the adipocytes can again undergo rapid inhibition and recovery of transport activity upon further treatment with PhAsO (1 microM). In addition, PhAsO is shown to inhibit cytochalasin B binding to plasma membranes from insulin-stimulated adipocytes in a concentration-dependent manner which parallels the dose-response inhibition of hexose transport by PhAsO. The data presented suggest a direct interaction between the D-glucose transporter and PhAsO, resulting in inhibition of transport. The results are consistent with the current recruitment hypothesis of insulin activation of sugar transport and indicate that a considerable reserve of intracellular glucose carriers exists within fat cells.  相似文献   

16.
T cells infiltrating (T-TIL) B cell non-Hodgkin's lymphomas (NHL) are thought to represent a local host response to the tumor. However, tumor progression in the presence of this T cell infiltrate suggests that the T-TIL may be functionally impaired. To address this issue we determined whether response to stimulation of T-TIL from 25 patients with NHL through the T cell receptor (TCR/CD3) and the interleukin-2 (IL-2) receptor (IL-2R) was intact, since activation of these receptors is important for proliferation and cytokine production. Our results demonstrate defects in response to stimulation via TCR/CD3 and the IL-2R in T-TIL cells from patients with NHL that were not observed with T cells from the peripheral blood. T-TIL showed minimal proliferation to anti-CD3 and only modest proliferation to IL-2 alone or when combined with anti-CD3. Moreover, cytokine production in T-TIL was impaired since stimulation through the TCR/CD3 complex did not induce mRNA for interferon (IFN), IL-2, IL-4 or IL-10. The functional unresponsiveness of these cells may be linked to altered signalling through the TCR/CD3 since an abnormal tyrosine phosphorylation pattern was detected in T-TIL after stimulation with anti-CD3.  相似文献   

17.

Background

Glucagon like peptide-1 (GLP-1) stimulates insulin secretion from the pancreas but also has extra-pancreatic effects. GLP-1 may stimulate glucose uptake in cultured muscle cells but the mechanism is not clearly defined. Furthermore, while the pancreatic effects of GLP-1 are glucose-dependent, the glucose-dependency of its extra-pancreatic effects has not been examined.

Methods

Skeletal muscle satellite cells isolated from young (22.5±0.97 yr), lean (BMI 22.5±0.6 kg/m2), healthy males were differentiated in media containing either 22.5 mM (high) or 5 mM (normal) glucose for 7 days in the absence or presence of insulin and/or various GLP-1 concentrations. Myocellular effects of GLP-1, insulin and glucose were assessed by western-blot, glucose uptake and glycogen synthesis.

Results

We firstly show that the GLP-1 receptor protein is expressed in differentiated human muscle satellite cells (myocytes). Secondly, we show that in 5 mM glucose media, exposure of myocytes to GLP-1 results in a dose dependent increase in glucose uptake, GLUT4 amount and subsequently glycogen synthesis in a PI3K dependent manner, independent of the insulin signaling cascade. Importantly, we provide evidence that differentiation of human satellite cells in hyperglycemic (22.5 mM glucose) conditions increases GLUT1 expression, and renders the cells insulin resistant and interestingly GLP-1 resistant in terms of glucose uptake and glycogen synthesis. Hyperglycemic conditions did not affect the ability of insulin to phosphorylate downstream targets, PKB or GSK3. Interestingly we show that at 5 mM glucose, GLP-1 increases GLUT4 protein levels and that this effect is abolished by hyperglycemia.

Conclusions

GLP-1 increases glucose uptake and glycogen synthesis into fully-differentiated human satellite cells in a PI3-K dependent mechanism potentially through increased GLUT4 protein levels. The latter occurs independently of the insulin signaling pathway. Attenuation of both GLP-1 and insulin-induced glucose metabolism by hyperglycemia is likely to occur downstream of PI3K.  相似文献   

18.
Insulin stimulation of hydrogen peroxide production by rat epididymal fat cells was investigated by studying the oxidation of formate to CO2 by endogenous catalase. Under optimal concentrations of formate (0.1 to 1 mM) and glucose (0.275 mM), insulin stimulated formate oxidation 1.5- to 2.0-fold. Inhibitors of catalase activity, including nitrite and azide, inhibited both basal and insulin-stimulated formate oxidation at concentrations that did not interfere with insulin effects on glucose C-1 oxidation or glucose H-3 incorporation into lipids. The addition of exogenous catalase increased formate oxidation only slightly, while exogenous H2O2 (0.5 mM) stimulated formate oxidation by endogenous catalase strongly. These data indicate that the insulin-stimulated H2O2 production was intracellular. Insulin dose-response curves for formate oxidation were identical with those for glucose H-3 incorporation into lipids. The dependence of relative insulin effects on the logarithm of the glucose concentration was bell-shaped for formate oxidation and correlated highly with the coresponding dependences of glucose C-1 oxidation and glucose H-3 incorporation into lipids. This suggests that insulin stimulation of intracellular H2O2 production is linked to glucose metabolism. Since it is known that extracellular H2O2 can mimic insulin in several respects, these observations suggest that H2O2 may act as a "second messenger" for the observed effects of insulin.  相似文献   

19.
Metabolic disturbances in diabetic cardiomyopathy   总被引:24,自引:0,他引:24  
It has been established that diabetes results in a cardiomyopathy, and increasing evidence suggests that an altered substrate supply and utilization by cardiac myocytes could be the primary injury in the pathogenesis of this specific heart muscle disease. For example, in diabetes, glucose utilization is insignificant, and energy production is shifted almost exclusively towards -oxidation of free fatty acids (FFA). FFA's are supplied to cardiac cells from two sources: lipolysis of endogenous cardiac triglyceride (TG) stores, or from exogenous sources in the blood (as free acid bound to albumin or as TG in lipoproteins). The approximate contribution of FFA from exogenous or endogenous sources towards -oxidation in the diabetic heart is unknown. In an insulin-deficient state, adipose tissue lipolysis is enhanced, resulting in an elevated circulating FFA. In addition, hydrolysis of the augmented myocardial TG stores could also lead to high tissue FFA. Whatever the source of FFA, their increased utilization may have deleterious effects on myocardial function and includes the abnormally high oxygen requirement during FFA metabolism, the intracellular accumulation of potentially toxic intermediates of FFA, a FFA-induced inhibition of glucose oxidation, and severe morphological changes. Therapies that target these metabolic aberrations in the heart during the early stages of diabetes could potentially delay or impede the progression of more permanent sequelae that could ensue from otherwise uncontrolled derangements in cardiac metabolism.  相似文献   

20.
The pathophysiologic importance of insulin resistance in diseases such as obesity and diabetes mellitus has led to great interest in defining the mechanism of insulin action as well as the means to overcome the biochemical defects responsible for the resistance. Vanadium compounds have been discovered to mimic many of the metabolic actions of insulin both in vitro and in vivo and improve glycemic control in human subjects with diabetes mellitus. Apart from its direct insulinmimetic actions, we found that vanadate modulates insulin metabolic effects by enhancing insulin sensitivity and prolonging insulin action. All of these actions appear to be related to protein tyrosine phosphatase (PTP) inhibition. However, in contrast to its stimulatory effects, vanadate inhibits basal and insulin-stimulated system A amino acid uptake and cell proliferation. The mechanism of these actions also appears to be related to PTP inhibition, consistent with the multiple roles of PTPs in regulating signal transduction. While the precise biochemical pathway of vanadate action is not yet known, it is clearly different from that of insulin in that the insulin receptor and phosphatidylinositol 3-kinase do not seem to be essential for vanadate stimulation of glucose uptake and metabolism. The ability of vanadium compounds to bypass defects in insulin action in diseases characterized by insulin resistance and their apparent preferential metabolic versus mitogenic signaling profile make them attractive as potential pharmacological agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号