共查询到20条相似文献,搜索用时 0 毫秒
1.
The ATP-sensitive potassium (K(ATP)) channel links cell metabolism to membrane excitability. Intracellular ATP inhibits channel activity by binding to the Kir6.2 subunit of the channel, but the ATP binding site is unknown. Using cysteine-scanning mutagenesis and charged thiol-modifying reagents, we identified two amino acids in Kir6.2 that appear to interact directly with ATP: R50 in the N-terminus, and K185 in the C-terminus. The ATP sensitivity of the R50C and K185C mutant channels was increased by a positively charged thiol reagent (MTSEA), and was reduced by the negatively charged reagent MTSES. Comparison of the inhibitory effects of ATP, ADP and AMP after thiol modification suggests that K185 interacts primarily with the beta-phosphate, and R50 with the gamma-phosphate, of ATP. A molecular model of the C-terminus of Kir6.2 (based on the crystal structure of Kir3.1) was constructed and automated docking was used to identify residues interacting with ATP. These results support the idea that K185 interacts with the beta-phosphate of ATP. Thus both N- and C-termini may contribute to the ATP binding site. 相似文献
2.
Pratt EB Tewson P Bruederle CE Skach WR Shyng SL 《The Journal of general physiology》2011,137(3):299-314
Functional integrity of pancreatic adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels depends on the interactions between the pore-forming potassium channel subunit Kir6.2 and the regulatory subunit sulfonylurea receptor 1 (SUR1). Previous studies have shown that the N-terminal transmembrane domain of SUR1 (TMD0) interacts with Kir6.2 and is sufficient to confer high intrinsic open probability (P(o)) and bursting patterns of activity observed in full-length K(ATP) channels. However, the nature of TMD0-Kir6.2 interactions that underlie gating modulation is not well understood. Using two previously described disease-causing mutations in TMD0 (R74W and E128K), we performed amino acid substitutions to study the structural roles of these residues in K(ATP) channel function in the context of full-length SUR1 as well as TMD0. Our results revealed that although R74W and E128K in full-length SUR1 both decrease surface channel expression and reduce channel sensitivity to ATP inhibition, they arrive there via distinct mechanisms. Mutation of R74 uniformly reduced TMD0 protein levels, suggesting that R74 is necessary for stability of TMD0. In contrast, E128 mutations retained TMD0 protein levels but reduced functional coupling between TMD0 and Kir6.2 in mini-K(ATP) channels formed by TMD0 and Kir6.2. Importantly, E128K full-length channels, despite having a greatly reduced P(o), exhibit little response to phosphatidylinositol 4,5-bisphosphate (PIP(2)) stimulation. This is reminiscent of Kir6.2 channel behavior in the absence of SUR1 and suggests that TMD0 controls Kir6.2 gating by modulating Kir6.2 interactions with PIP(2). Further supporting this notion, the E128W mutation in full-length channels resulted in channel inactivation that was prevented or reversed by exogenous PIP(2). These results identify a critical determinant in TMD0 that controls Kir6.2 gating by controlling channel sensitivity to PIP(2). Moreover, they uncover a novel mechanism of K(ATP) channel inactivation involving aberrant functional coupling between SUR1 and Kir6.2. 相似文献
3.
Seharaseyon J Sasaki N Ohler A Sato T Fraser H Johns DC O'Rourke B Marbán E 《The Journal of biological chemistry》2000,275(23):17561-17565
K(ATP) channels consist of pore-forming potassium inward rectifier (Kir6.x) subunits and sulfonylurea receptors (SURs). Although Kir6.1 or Kir6.2 coassemble with different SUR isoforms to form heteromultimeric functional K(ATP) channels, it is not known whether Kir6.1 and Kir6.2 coassemble with each other. To define the molecular identity of K(ATP) channels, we used adenoviral gene transfer to express wild-type and dominant-negative constructs of Kir6.1 and Kir6.2 in a heterologous expression system (A549 cells) and in native cells (rabbit ventricular myocytes). Dominant-negative (DN) Kir6.2 gene transfer suppressed current through heterologously expressed SUR2A + Kir6.2 channels. Conversely, DN Kir6.1 suppressed SUR2B + Kir6.1 current but had no effect on coexpressed SUR2A + Kir6. 2. We next probed the ability of Kir6.1 and Kir6.2 to affect endogenous K(ATP) channels in adult rabbit ventricular myocytes, using adenoviral vectors to achieve efficient gene transfer. Infection with the DN Kir6.2 virus for 72 h suppressed pinacidil-inducible K(ATP) current density measured by whole-cell patch clamp. However, there was no effect of infection with the DN Kir6.1 on the K(ATP) current. Based on these functional assays, we conclude that Kir6.1 and Kir6.2 do not heteromultimerize with each other and that Kir6.2 is the sole K(ATP) pore-forming subunit in the surface membrane of heart cells. 相似文献
4.
《Channels (Austin, Tex.)》2013,7(4):314-319
ATP-sensitive potassium (KATP) channels are inhibited by ATP and activated by phosphatidylinositol 4,5-bisphosphate (PIP2). Both channel subunits Kir6.2 and sulfonylurea receptor 1 (SUR1) contribute to gating: while Kir6.2 interacts with ATP and PIP2, SUR1 enhances sensitivity to both ligands. Recently, we showed that a mutation, E128K, in the N-terminal transmembrane domain of SUR1 disrupts functional coupling between SUR1 and Kir6.2, leading to reduced ATP and PIP2 sensitivities resembling channels formed by Kir6.2 alone. We show here that when E128K SUR1 was co-expressed with Kir6.2 mutants known to disrupt PIP2 gating, the resulting channels were surprisingly stimulated rather than inhibited by ATP. To explain this paradoxical gating behavior, we propose a model in which the open state of doubly mutant channels is highly unstable; ATP binding induces a conformational change in ATP-unbound closed channels that is conducive to brief opening when ATP unbinds, giving rise to the appearance of ATP-induced stimulation. 相似文献
5.
ATP-sensitive potassium (K(ATP)) channels are inhibited by ATP and activated by phosphatidylinositol 4,5-bisphosphate (PIP(2)). Both channel subunits Kir6.2 and sulfonylurea receptor 1 (SUR1) contribute to gating: while Kir6.2 interacts with ATP and PIP(2), SUR1 enhances sensitivity to both ligands. Recently, we showed that a mutation, E128K, in the N-terminal transmembrane domain of SUR1 disrupts functional coupling between SUR1 and Kir6.2, leading to reduced ATP and PIP(2) sensitivities resembling channels formed by Kir6.2 alone. We show here that when E128K SUR1 was co-expressed with Kir6.2 mutants known to disrupt PIP(2) gating, the resulting channels were surprisingly stimulated rather than inhibited by ATP. To explain this paradoxical gating behavior, we propose a model in which the open state of doubly mutant channels is highly unstable; ATP binding induces a conformational change in ATP-unbound closed channels that is conducive to brief opening when ATP unbinds, giving rise to the appearance of ATP-induced stimulation. 相似文献
6.
Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit 下载免费PDF全文
ATP-sensitive potassium (KATP) channels couple cell metabolism to electrical activity by regulating K+ flux across the plasma membrane. Channel closure is mediated by ATP, which binds to the pore-forming subunit (Kir6.2). Here we use homology modelling and ligand docking to construct a model of the Kir6.2 tetramer and identify the ATP-binding site. The model is consistent with a large amount of functional data and was further tested by mutagenesis. Ligand binding occurs at the interface between two subunits. The phosphate tail of ATP interacts with R201 and K185 in the C-terminus of one subunit, and with R50 in the N-terminus of another; the N6 atom of the adenine ring interacts with E179 and R301 in the same subunit. Mutation of residues lining the binding pocket reduced ATP-dependent channel inhibition. The model also suggests that interactions between the C-terminus of one subunit and the 'slide helix' of the adjacent subunit may be involved in ATP-dependent gating. Consistent with a role in gating, mutations in the slide helix bias the intrinsic channel conformation towards the open state. 相似文献
7.
Inwardly rectifying potassium (Kir) channels are characterized by a long pore comprised of continuous transmembrane and cytosolic portions. A high-resolution structure of a Kir3.1 chimera revealed the presence of the cytosolic (G-loop) gate captured in the closed or open conformations. Here, we conducted molecular-dynamics simulations of these two channel states in the presence and absence of phosphatidylinositol bisphosphate (PIP(2)), a phospholipid that is known to gate Kir channels. Simulations of the closed state with PIP(2) revealed an intermediate state between the closed and open conformations involving direct transient interactions with PIP(2), as well as a network of transitional inter- and intrasubunit interactions. Key elements in the G-loop gating transition involved a PIP(2)-driven movement of the N-terminus and C-linker that removed constraining intermolecular interactions and led to CD-loop stabilization of the G-loop gate in the open state. To our knowledge, this is the first dynamic molecular view of PIP(2)-induced channel gating that is consistent with existing experimental data. 相似文献
8.
Hsu LC 《Biochemical and biophysical research communications》2007,360(2):507-512
The phosphorylation state of the tumor suppressor protein BRCA1 is tightly associated with its functions including cell cycle control and DNA repair. Protein kinases involved in the DNA damage checkpoint control, such as ATM, ATR, and hCds1/Chk2, have been shown to phosphorylate and activate BRCA1 upon DNA damage. We reported previously that protein phosphatase 1alpha (PP1alpha) interacts with and dephosphorylates hCds1/Chk2-phosphorylated BRCA1. This study demonstrates the identification of a PP1-binding motif 898KVTF901 in BRCA1. Mutation or deletion of critical residues in this PP1-binding motif substantially reduces the interaction between BRCA1 and PP1alpha. PP1alpha can also dephosphorylate ATM and ATR phosphorylation sites in BRCA1 and may serve as a general regulator for BRCA1 phosphorylation. Unlike wild-type BRCA1, expression of the PP1 non-binding mutant BRCA1 protein in BRCA1-deficient cells failed to enhance survival after DNA damage. Taken together, these results suggest that interaction with PP1alpha is important for BRCA1 function. 相似文献
9.
Liu Y Teeter MM DuRand CJ Neve KA 《Biochemical and biophysical research communications》2006,339(3):873-879
Zinc (II) modulates the function of many integral membrane proteins. To identify the Zn(2+)-binding site responsible for allosteric modulation of the D(2) dopamine receptor, we first demonstrated that the binding site is likely located in extracellular loops or in transmembrane regions that are accessible from the extracellular milieu. We mutated every histidine in these regions to alanine; two mutants, H394A and H399A, exhibited a reduced response to Zn(2+). Combined mutation of H394 and H399 caused a larger effect of zinc than did either single mutation. Mutation of other potential Zn(2+)-binding residues predicted to be in proximity to H394 or H399 did not substantially alter the potency of Zn(2+). The double mutant H394A/H399A was similar to D(2) in affinity for [(3)H]spiperone and ability to inhibit cyclic AMP accumulation. We conclude that binding of Zn(2+) to H394 and H399 on the dopamine D(2) receptor contributes to allosteric regulation of antagonist binding. 相似文献
10.
《Channels (Austin, Tex.)》2013,7(5):327-330
Inhibition by intracellular H+ (pH gating) and activation by phosphoinositides such as PIP2 (PIP2 gating) are key regulatory mechanisms in the physiology of inwardly-rectifying potassium (Kir) channels. Our recent findings suggest that PIP2 gating and pH gating are controlled by an intrasubunit H-bond at the helix-bundle crossing between a lysine in TM1 and a backbone carbonyl group in TM2. This interaction only occurs in the closed state and channel opening requires this H-bond to be broken, thereby influencing the kinetics of PIP2- and pH-gating in Kir channels. In this addendum, we explore the role of H-bonding in heteromeric Kir4.1/Kir5.1 channels. Kir5.1 subunits do not possess a TM1 lysine. However, homology modelling and molecular dynamics simulations demonstrate that the TM1 lysine in Kir4.1 is capable of H-bonding at the helix-bundle crossing. Consistent with this, the rates of pH and PIP2 gating in Kir4.1/Kir5.1 channels (two H-bonds) were intermediate between those of wild-type homomeric Kir4.1 (four H-bonds) and Kir4.1(K67M) channels (no H-bonds) suggesting that the number of H-bonds in the tetrameric channel complex determines the gating kinetics. Furthermore, in heteromeric Kir4.1(K67M)/Kir5.1 channels, where the two remaining H-bonds are disrupted, we found that the gating kinetics were similar to Kir4.1(K67M) homomeric channels despite the fact that these two channels differ considerably in their PIP2 affinities. This indicates that Kir channel PIP2 affinity has little impact on either the PIP2- or pH-gating kinetics. 相似文献
11.
Rapedius M Paynter JJ Fowler PW Shang L Sansom MS Tucker SJ Baukrowitz T 《Channels (Austin, Tex.)》2007,1(5):327-330
Inhibition by intracellular H(+) (pH gating) and activation by phosphoinositides such as PIP(2) (PIP(2)-gating) are key regulatory mechanisms in the physiology of inwardly-rectifying potassium (Kir) channels. Our recent findings suggest that PIP(2) gating and pH gating are controlled by an intra-subunit H-bond at the helix-bundle crossing between a lysine in TM1 and a backbone carbonyl group in TM2. This interaction only occurs in the closed state and channel opening requires this H-bond to be broken, thereby influencing the kinetics of PIP(2) and pH gating in Kir channels. In this addendum, we explore the role of H-bonding in heteromeric Kir4.1/Kir5.1 channels. Kir5.1 subunits do not possess a TM1 lysine. However, homology modelling and molecular dynamics simulations demonstrate that the TM1 lysine in Kir4.1 is capable of H-bonding at the helix-bundle crossing. Consistent with this, the rates of pH and PIP2 gating in Kir4.1/Kir5.1 channels (two H-bonds) were intermediate between those of wild-type homomeric Kir4.1 (four H-bonds) and Kir4.1(K67M) channels (no H-bonds) suggesting that the number of H-bonds in the tetrameric channel complex determines the gating kinetics. Furthermore, in heteromeric Kir4.1(K67M)/Kir5.1 channels, where the two remaining H-bonds are disrupted, we found that the gating kinetics were similar to Kir4.1(K67M) homomeric channels despite the fact that these two channels differ considerably in their PIP(2) affinities. This indicates that Kir channel PIP(2) affinity has little impact on either the PIP(2) or pH gating kinetics. 相似文献
12.
Heng Yang Ren Guo Jiongxing Wu Yufeng Peng Dujie Xie Wen Zheng Xian Huang Ding Liu Wei Liu Lihua Huang Zhi Song 《Neurochemical research》2013,38(4):677-685
Metabolic modulation of neuronal excitability is becoming increasingly important as an antiepileptic therapy. It was reported that the glycolytic inhibitor 2-deoxy-d-glucose (2-DG) and the activation of the ATP-sensitive potassium ion channel (KATP channel) had an antiepileptic effect in models of epilepsy. To explore whether 2-DG exerts an antiepileptic effect through upregulation of the KATP channel subunits Kir6.1 and Kir6.2, the expression of these subunits in hippocampus of five groups of mice with pilocarpine-induced status epilepticus (SE) was evaluated. A seizure group with pilocarpine-kindling convulsions (EP) was compared to similar groups treated with high, medium, and low 2-DG concentrations (100–500 mg/kg) and a normal control group (Con). Kir6.1 and Kir6.2 mRNAs and proteins were analyzed at 4 h, 1 days (acute period), 7 days (latent period), 30, and 60 days (chronic period) following SE. In the seizure group (compared to the Con group), hippocampal expression of Kir6.1 and Kir6.2 increased dramatically at 1, 7, and 30 days, and was further increased after treatment with medium and high dose 2-DG (all P < 0.05). Our results suggest that 2-DG may exert an antiepileptic effect through up-regulation of mRNAs and protein levels of Kir6.1 and Kir6.2, which may therefore be used as molecular targets in the treatment of epilepsy with 2-DG. 相似文献
13.
3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1 下载免费PDF全文
Mikhailov MV Campbell JD de Wet H Shimomura K Zadek B Collins RF Sansom MS Ford RC Ashcroft FM 《The EMBO journal》2005,24(23):4166-4175
ATP-sensitive potassium (K(ATP)) channels conduct potassium ions across cell membranes and thereby couple cellular energy metabolism to membrane electrical activity. Here, we report the heterologous expression and purification of a functionally active K(ATP) channel complex composed of pore-forming Kir6.2 and regulatory SUR1 subunits, and determination of its structure at 18 A resolution by single-particle electron microscopy. The purified channel shows ATP-ase activity similar to that of ATP-binding cassette proteins related to SUR1, and supports Rb(+) fluxes when reconstituted into liposomes. It has a compact structure, with four SUR1 subunits embracing a central Kir6.2 tetramer in both transmembrane and cytosolic domains. A cleft between adjacent SUR1s provides a route by which ATP may access its binding site on Kir6.2. The nucleotide-binding domains of adjacent SUR1 appear to interact, and form a large docking platform for cytosolic proteins. The structure, in combination with molecular modelling, suggests how SUR1 interacts with Kir6.2. 相似文献
14.
Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K+ (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas. 相似文献
15.
We previously showed that activation of the human endothelin A receptor (HETAR) by endothelin-1 (Et-1) selectively inhibits the response to mu opioid receptor (MOR) activation of the G-protein-gated inwardly rectifying potassium channel (Kir3). The Et-1 effect resulted from PLA2 production of an eicosanoid that inhibited Kir3. In this study, we show that Kir3 inhibition by eicosanoids is channel subunit-specific, and we identify the site within the channel required for arachidonic acid sensitivity. Activation of the G-protein-coupled MOR by the selective opioid agonist D-Ala(2)Glyol, enkephalin, released Gbetagamma that activated Kir3. The response to MOR activation was significantly inhibited by Et-1 activation of HETAR in homomeric channels composed of either Kir3.2 or Kir3.4. In contrast, homomeric channels of Kir3.1 were substantially less sensitive. Domain deletion and channel chimera studies suggested that the sites within the channel required for Et-1-induced inhibition were within the region responsible for channel gating. Mutation of a single amino acid in the homomeric Kir3.1 to produce Kir3.1(F137S)(N217D) dramatically increased the channel sensitivity to arachidonic acid and Et-1 treatment. Complementary mutation of the equivalent amino acid in Kir3.4 to produce Kir3.4(S143T)(D223N) significantly reduced the sensitivity of the channel to arachidonic acid- and Et-1-induced inhibition. The critical aspartate residue required for eicosanoid sensitivity is the same residue required for Na(+) regulation of PIP(2) gating. The results suggest a model of Kir3 gating that incorporates a series of regulatory steps, including Gbetagamma, PIP(2), Na(+), and arachidonic acid binding to the channel gating domain. 相似文献
16.
Structural and functional determinants of conserved lipid interaction domains of inward rectifying Kir6.2 channels 总被引:3,自引:0,他引:3 下载免费PDF全文
All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels. 相似文献
17.
Schulze D Krauter T Fritzenschaft H Soom M Baukrowitz T 《The Journal of biological chemistry》2003,278(12):10500-10505
Phosphatidylinositol polyphosphates (PIPs) are potent modulators of Kir channels. Previous studies have implicated basic residues in the C terminus of Kir6.2 channels as interaction sites for the PIPs. Here we examined the role of the N terminus and identified an arginine (Arg-54) as a major determinant for PIP(2) modulation of ATP sensitivity in K(ATP) channels. Mutation of Arg-54 to the neutral glutamine (R54Q) and, in particular, to the negatively charged glutamate (R54E) impaired PIP(2) modulation of ATP inhibition, while mutation to lysine (R54K) had no effect. These data suggest that electrostatic interactions between PIP(2) and Arg-54 are an essential step for the modulation of ATP sensitivity. This N-terminal PIP(2) site is highly conserved in Kir channels with the exception of the pH-gated channels Kir1.1, Kir4.1, and Kir5.1 that contain a neutral residue at the corresponding positions. Introduction of an arginine at this position in Kir1.1 channels rendered the N-terminal PIP(2) site functional largely increasing the PIP(2) affinity. Moreover, Kir1.1 channels lose the ability to respond to physiological changes of the intracellular pH. These results explain the need of a silent N-terminal PIP(2) site in pH-gated channels and highlight the N terminus as an important region for PIP(2) modulation of Kir channel gating. 相似文献
18.
The binding of the gelsolin P2 peptide (residues 150-169) with lysophosphatidic acid (LPA) and lipopolysaccharide (LPS) was investigated by isothermal titration calorimetry. P2 binds to LPS with higher affinity than to LPA. For the interaction of 1-oleoyl-LPA with P2 in the absence of salt, K(d) and deltaH degrees were 920 nM and -2.07 kcal/mol, respectively, at pH 7.4 and 25 degrees C. For the interaction of lipopolysaccharide (LPS) from P. aeruginosa with P2 under the same conditions, K(d) was 177 nM and deltaH degrees was -7.6 kcal/mol. 相似文献
19.
Domain analysis of cortexillin I: actin-bundling, PIP(2)-binding and the rescue of cytokinesis 下载免费PDF全文
Stock A Steinmetz MO Janmey PA Aebi U Gerisch G Kammerer RA Weber I Faix J 《The EMBO journal》1999,18(19):5274-5284
Cortexillins are actin-bundling proteins that form a parallel two-stranded coiled-coil rod. Actin-binding domains of the alpha-actinin/spectrin type are located N-terminal to the rod and unique sequence elements are found in the C-terminal region. Domain analysis in vitro revealed that the N-terminal domains are not responsible for the strong actin-filament bundling activity of cortexillin I. The strongest activity resides in the C-terminal region. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) suppresses this bundling activity by binding to a C-terminal nonapeptide sequence. These data define a new PIP(2)-regulated actin-bundling site. In vivo the PIP(2)-binding motif enhances localization of a C-terminal cortexillin I fragment to the cell cortex and improves the rescue of cytokinesis. This motif is not required, however, for translocation to the cleavage furrow. A model is presented proposing that cortexillin translocation is based on a mitotic cycle of polar actin polymerization and midzone depolymerization. 相似文献
20.
M Tamburrini A Riccio M Romano B Giardina G di Prisco 《European journal of biochemistry》2000,267(19):6089-6098
The amino-acid sequence and the oxygen-binding properties of the two haemoglobins of the Antarctic seabird south polar skua have been investigated. The two haemoglobins showed peculiar functional features, which were probably acquired to meet special needs in relation to the extreme environmental conditions. Both haemoglobins showed a weak alkaline Bohr effect which, during prolonged flight, may protect against sudden and uncontrolled stripping of oxygen in response to acidosis. We suggest that a weak Bohr effect in birds may reflect adaptation to extreme life conditions. The values of heat of oxygenation suggest different functional roles of the two haemoglobins. The experimental evidence suggests that both haemoglobins may bind phosphate at two distinct binding sites. In fact, analysis of the molecular models revealed that an additional phosphate binding site, formed by residues NA1alpha, G6alpha and HC3alpha, is located between the two alpha chains. This additional site may act as an entry/leaving site, thus increasing the probability of capturing phosphate and transferring it to the main binding site located between the two beta chains by means of a site-site migratory mechanism, thereby favouring the release of oxygen. It is suggested that most haemoglobins possess an additional phosphate binding site, having such a role in oxygen transport. 相似文献