首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The large enhancement of the green luminescence of terbium ion which occurs on binding to porcine and bovine trypsins and to bovine α-chymotrypsin has been used to study the calcium binding sites of these enzymes. Excitation spectra, taken at low protein concentrations to minimize absorption effects, demonstrate that in each case, energy transfer occurs between the side chain of a tryptophan residue and bound Tb3+. Association constants for the binding of Tb3+ to the single binding site on each of the three proteins have been measured at 25 °C and pH 6.6. Ca2+ ions compete with Tb3+ for the single binding site, and association constants for Ca2+ were determined by Tb3+ displacement. The ratio of binding strengths of Ca2+ to α-chymotrypsin, bovine trypsin, porcine trypsin, and elastase is 1:12:24:23. Addition of Tb3+ to the homologous bacterial enzyme α-lytic protease caused no luminescence enhancement.  相似文献   

2.
The spin lattice relaxation rates (1T1) of the natural abundance 13C of all seven carbons of α-methyl-d-glucopyranoside were measured in the presence of Mn(II)-concanavalin A. The paramagnetic contribution to the relaxation rates was used to calculate the distance between the Mn(II) site and the saccharide. The results are consistent with the binding of the saccharide in a unique configuration on the surface of the protein with the ?CH2OH (6 carbon) ~9Å, the ?CH3 (7 carbon) 14Å, and carbons 1–5 about 10Å from the Mn(II). Notwithstanding the fact that these distances may be 10% or less in error, these data are in disagreement with a value of greater than 10Å between the saccharide and Mn(II) binding sites determined from X-ray diffraction studies by Edelman et al. ((1972) Proc. Nat. Acad. Sci. USA69, 2580–2584) and Hardman and Ainsworth ((1972) Biochemistry11, 4910–4919).  相似文献   

3.
Catalytic and inhibitor binding properties of bovine α-chymotrypsin, in which the Met-192 residue has been converted by treatment with chloramine T to the sulfoxide derivative (Met(O)192 α-chymotrypsin), have been examined relative to the native enzyme (α-chymotrypsin), between pH 4.5 and 8.0 (μ = 0.1), and/or 5.0°C and 40.0°C. Values of kcat, k+2 and/or k+3 for the hydrolysis of all the substrates examined (i.e., tMetAcONp, ZAlaONp, ZLeuONp, ZLysONp and ZTyrONp) catalyzed by native and Met(O)192 α-chymotrypsin are similar, as well as values of Km for the hydrolysis of ZLeuONp, ZLysONp and ZTyrONp. On the other hand, Ks and Km values for the hydrolysis of ZAlaONp and tMetAcONp are decreased by about 5-fold. Met-192 oxidation does not affect the kinetic and thermodynamic parameters for the (de)stabilization of the complex formed between the proteinase and the bovine basic pancreatic trypsin inhibitor. On the other hand, the recognition process between between α-chymotrypsin and the recombinant proteinase inhibitor eglin c from the leech Hirudo medicinalis is influenced by the oxidation event. Considering known molecular models, the observed catalytic and inhibitor binding properties of native and Met(O)192 α-chymotrypsin were related to the inferred stereochemistry of the proteinase-substrate and proteinase-inhibitor contact region(s).  相似文献   

4.
Iron(III) complexes of three aroyl hydrazones, pyridoxal isonicotinoyl hydrazone (H2pih), pyridoxal benzoyl hydrazone (H2pbh), and salicylaldehyde benzoyl hydrazone (H2sbh), were synthesized and characterized. In aqueous medium at pH 7, [Fe(pih)(Hpih)]·3H2O is formed. In acidic methanol, a 1:1 ligand-to-metal complex is formed, [FeCl2(H2pih)]Cl (1), whereas in aqueous medium at low pH cis-[FeCl2(H2pih)(H2O)]Cl·H2O (2) is formed. Compounds 1 and 2 are high-spin d5 with μeff = 5.88 μB and 5.93 μB (298 K). The crystal structures of 1 and 2 show that H2pih acts as a tridentate neutral ligand in which the phenolic and hydrazidic protons have shifted to the pyridine nitrogen atoms. The co- ordination polyhedron of 1 is ‘square’ pyramidal, whereas that of 2 is pseudo-octahedral. Compound 1 is triclinic, space group Pl, with a = 12.704(2) Å, b = 8.655(2) Å, c = 8.820(2) Å, α = 105.42(1)°, β = 89.87(1)°, γ = 107.60(1)°, V = 888 Å3, and Z = 2; 2 is monoclinic, space group P21/c, with a = 15.358(4) Å, b = 7.304(3) Å, c = 17.442(4) Å, β = 101.00(2)°, V = 1921 Å3, and Z = 4.  相似文献   

5.
The interaction of the inhibitor VJ (InhVJ), isolated from sea anemone R. macrodactylus, with different proteases was investigated using the method of biosensor analysis. The following enzymes were tested: serine proteases (trypsin, α-chymotrypsin, plasmin, thrombin, kallikrein), cysteina protease (papain) and aspartic protease (pepsin). In the rage of the concentrations studied (10–400 nM) inhibitor VJ interacted only with trypsin and α-chymotrypsin. The intermolecular complexes formation between inhibitor VJ and each of these enzymes was characterized by the following kinetic and thermodynamics parameters: KD = 7.38 × 10?8 M and 9.93 × 10?7 M for pairs InhVJ/trypsin and InhVJ/α-chymotrypsin, respectively.  相似文献   

6.
The conversion of the serine-195 in α-chymotrypsin to dehydroalanine results in two conformational substates that differ in their extinction coefficients at 240nm. The active site methionine-192 in the substate with lower absorption at 240nm is alkylated by α-bromo-4-nitroacetophenone at a rate of 7.0×10?4sec?1, similar to that found for α-chymotrypsin; the substate with higher absorption at 240nm reacts 14 times slower. These two substates are not separated by an affinity resin containing lima bean trypsin inhibitor. These data infer that the serine-195 plays a role in the stabilization of the active site conformation in α-chymotrypsin.  相似文献   

7.
Proton and phosphorus-31 nuclear spin–lattice relaxation times T1 and spin–spin relaxation times T2 have been measured on the single-stranded polyriboadenylic acid [poly(A)]–Mn2+ system in a neutral D2O solution in the temperature range 10°–90°C at 100 and 40.5 MHz, respectively, with the Fourier transform nmr method. Minimum values of T1 have been found for all these nuclei, which have enabled the exact estimation of apparent distances from Mn2+ to H2, H8, H1′, and the phosphorus nucleus to be 4.7, 4.1, 5.2, and 3.0 Å, respectively. The electron spin of Mn2+ penetrates into the phosphorus nucleus, giving 31P hyperfine coupling of more than 106 Hz. Evidence of penetration of the electron spin into H8 and H2 is also obtained, suggesting direct coordination of nitrogen atoms of the adenine ring to the Mn2+ Ion. Combined with the result from proton relaxation enhancement of water, it is concluded that every Mn2+ ion added is bound directly to two phosphate groups with a Mn2+–phosphorus distance of 3.3 Å, while a part of the Mn2+ ions are simultaneouly bound to the adenine ring. It is estimated that 39 ± 13% and 13 ± 5% of Mn2+ are coordinated by N7 and N3 (or N1), respectively. The motional freedom of poly(A) in the environment of the Mn2+ binding site has been found to be quenched to the extent that the rotational motion becomes several times slower than that of the corresponding Mn2+–free poly(A). The activation energies for the molecular motion are, however, practically unchanged from those for Mn2+–free poly(A), and are found to be 8.3, 8.5, 6.1, and 8.7 kcal/mol for H8, H2, H1′, and phosphorus, respectively. T2 of phosphorus is determined by the dissociation rate (k?1) of Mn2+ from the phosphate group for the whole temperature range studied with activation enthalpy of 6.5 kcal/mol. The dissociation rates of Mn2+ from the adenine ring are also estimated from proton T2 values below 50°C.  相似文献   

8.
9.
A series of dipeptide aldehydes containing different N-terminal heterocycles was prepared and assayed in vitro against α-chymotrypsin to ascertain the importance of the heterocycle in maintaining a β-strand geometry while also providing a hydrogen bond donor equivalent to the backbone amide nitrogen of the surrogate amino acid. The dipeptide containing a pyrrole constraint (10) was the most potent inhibitor, with >30-fold improved activity over dipeptides which lacked a nitrogen hydrogen bond donor (namely thiophene 11, furan 12 and pyridine 13). Molecular docking studies of 10 bound to α-chymotrypsin demonstrates a hydrogen bond between the pyrrole nitrogen donor and the backbone carbonyl of Gly216 located in the S3 pocket which is proposed to be critical for overall binding.  相似文献   

10.
Eight and five proteinase inhibitors were purified from Erythrina corallodendron and E. cristagalli seeds, respectively, by gel filtration followed by ion exchange chromatography on DEAE-cellulose and DEAE-sepharose. Each inhibitor consists of 161–163 amino acids (Mr 18 000) including four half-cystine residues and resembles the Kunitz-type proteinase inhibitors. The N-terminal amino acid sequence of trypsin inhibitor DE-7 from E. corallodendron seed resembles those of other Erythrina species. For the other inhibitors no free N-terminal amino acid was found. DE-1,-2,-3,-4 and -5 from the seed of E. corallodendron contain potent inhibitors for α-chymotrypsin and they have practically no action on trypsin. From the same seed, inhibitors DE-6, -7 and -8 strongly inhibit trypsin and also inhibit α-chymotrypsin to varying degrees. From the seeds of E. cristagalli, inhibitors DE-1 and -8 inhibit trypsin strongly and DE-2, -3 and -4 are strongly inhibitory for α-chymotrypsin. On summarizing the inhibitor characteristics of the Kunitz-type proteinase inhibitors from the seeds of eight different species of Erythrina, it was obvious that there is a relationship between the alanine content of the inhibitors and their activities. A high alanine content is associated with potent α-chymotrypsin activities and low alanine content with strong trypsin activities.  相似文献   

11.
To study the influence of cell wall polyuronide structure on bound paramagnetic ion interactions, spin-spin coupling measurements were made on intact cell walls exchanged with a wide range fo Mn2+ and Cu2+ concentrations. These experiments were performed so that dimer-only intercationic nearest neighbor distances (d) and lattice constants (κ) could be calculated from the linewidth-concentration dependency. d values were estimated to be 12 and 14 Å for Cu2+ and Mn2+, respectively. At the maximal bound ion concentration, κ was 2.3–2.6, indicating that about 5–7 paramagnetic ion nearest neighbor spin-spin interactions occur per dipole in the nearly filled lattice. This latter observation strongly argues for the egg-box model of the cell wall-polyuronide lattice structure. Mn2+ linewidths of hydrated cell wall-bound paramagnetic ions displayed an unusual temperature dependency, whereby linewidths increased between 20°C and the temperature at which maximal linewidths were observed (Tmax). Tmax was inversely proportional to the degree of lattice hydration, indicating that the temperature dependency was not associated with the freezing of bound water. The relative change in Mn2+ linewidths, between 20°C and Tmax, was affected by binding site-associated 1H spin-lattice relaxation times, indicating that the temperature dependency is at least partially controlled by cell wall polyuronide structure.  相似文献   

12.
Interactions of α-chymotrypsin with 2-coumaranone (I), 3,4-dihydrocoumarin (II), o-hydroxy-α-toluenesulfonic acid sultone (III), and β-o-hydroxyphenylethanesulfonic acid sultone (IV) were studied in the presence of 14% acetonitrile at pH 7.0 by means of the proflavin displacement technique and by inhibition of N-acetyl-l-tryptophan ethyl ester (ATrEE) hydrolysis. Under saturating conditions of either I, II, or III, an enzyme intermediate was shown to accumulate using either the proflavin displacement technique or the ATrEE activity assay. The intermediates have characteristics of covalent enzyme-substrate compounds and are believed to decompose simultaneously by two pathways, one to give free enzyme and hydrolyzed cyclic ester, and the other to give the original cyclic ester and free enzyme. With α-chymotrypsin and III the observed first-order rate constant for decomposition of the intermediate by the two pathways was 0.19 ± 0.04 min?1, while the rate constant for the hydrolytic pathway alone was 0.013 ± 0.0009 min?1. These results indicate that the covalent-like intermediate with this sultone is not only capable of reverting to starting cyclic ester but prefers this pathway over hydrolysis. Sultone IV was found to bind to enzyme; but in contrast to the behavior of esters I–III, the binding did not result in accumulation of a covalent-like intermediate.  相似文献   

13.
The binding of Mn2+, Ca2+, and rare earth ions to apoconcanavalin A has been studied by water proton relaxation enhancement, electron paramagnetic resonance spectroscopy, and fluorescence spectroscopy. An electron paramagnetic resonance and water proton relaxation rate study of the titration of apoconcanavalin A with Mn2+ gives evidence of two equivalent binding sites per monomer with KD = 50 μm ± 4 μm. When a similar Mn2+ titration of apoconcanavalin A is performed in the presence of Ca2+ ion, very little free Mn2+ is detected by electron paramagnetic resonance until the two Mn2+ binding sites per monomer are filled. The substitution of a rare earth ion for Ca2+ ion in the above experiment often resulted in a slight displacement of Mn2+ from the transition metal site as detected by electron paramagnetic resonance. A water proton relaxation rate study of the titration of apoconcanavalin A with Gd3+ reflects two binding sites with a KD = 40 μm ± 4 μm and two with a KD = 200 μm ± 50 μm. The fluorescence emission spectrum of concanavalin A (λem = 340 nm) is slightly quenched by the addition of Tb3+ while Tb3+ fluorescence is greatly enhanced. A fluorometric titration of apoconcanavalin A with Tb3+ also reflects two sites with a KD = 40 μm ± 15 μm and two with a KD = 270 μm ± 50 μm.  相似文献   

14.
EPR and water proton relaxation rate (1/T1) studies of partially (40%) and “fully” (90%) purified preparations of membrane-bound (Na++K+) activated ATPase from sheep kidney indicate one tight binding site for Mn2+ per enzyme dimer, with a dissociation constant (KD = 0.88 μM) in agreement with the kinetically determined activator constant, identifying this Mn2+-binding site as the active site of the ATPase. Competition studies indicate that Mg2+ binds at this site with a dissociation constant of 1 mM in agreement with its activator constant. Inorganic phosphate and methylphosphonate bind to the enzyme-Mn2+ complex with similar high affinities and decrease l/T1 of water protons due t o a decrease from four to three in the number of rapidly exchanging water protons in the coordination sphere of enzyme-bound Mn2+. The relative effectiveness of Na+ and K+ in facilitating ternary complex formation with HPO and CH3PO as a function of pH indicates that Na+ induces the phosphate monoanion t o interact with enzyme-bound Mn2+, while K+ causes the phosphate dianion to interact with the enzyme-bound Mn2+. Thus protonation of an enzyme-bound phosphoryl group would convert a K+-binding site to a Na+-binding site. Dissociation constants for K+ and Na+, estimated from NMR titrations, agreed with kinetically determined activator constants of these ions consistent with binding t o the active site. Parallel 32Pi-binding studies show negligible formation (< 7%) of a covalent E–P complex under these conditions, indicating that the NMR method has detected an additional noncovalent intermediate in ion transport. Ouabain, which increases the extent of phosphorylation of the enzyme to 24% at pH 7.5 and t o 106% at pH 6.1, produced further decreases in l/T 1 of water protons. Preliminary 31P-relaxation studies of CH3PO in the presence of ATPase and Mn2+ yield an Mn to P distance (6.9 ± 0.5 Å) suggesting a second sphere enzyme-Mn-ligand-CH3PO complex. Previous kinetic studies have shown that T1+ substitutes for K+ in the activation of the enzyme but competes with Na+ at higher levels. From the paramagnetic effect of Mn2+ at the active site on the enzyme on I/T1 of 205T1 bound at the Na+ site, a Mn2+ to T1+ distance of 4.0 ± 0.1 Å is calculated, suggesting the sharing of a common ligand atom by Mn2+ and T1+ on the ATPase. Addition of P. increases this distance to 5.4 Å consistent with the insertion of P between Mn2+ and T1+. These results are consistent with a mechanism for the \documentclass{article}\pagestyle{empty}\begin{document}$ (\mathop {\rm N}\limits^{\rm i} {\rm a}^{\rm + } {\rm + K}^ +) $\end{document}-ATPase and for ion transport in which the ionization state of Pi at a single enzyme active site controls the binding and transport of Na+ and K+, and indicate that the transport site for monovalent cations is very near the catalytic site of the ATTase. Our mechanism also accounts for the order of magnitude weaker binding of Na+ compared to K+.  相似文献   

15.
NMR experiments were conducted to map distances among various loci on Escherichia coli carbamoyl-phosphate synthetase. Three paramagnetic probes, viz., Mn2+, Cr3+-ATP, and nitroxide spin-labels were used in experiments designed to measure the 1T1 (longitudinal relaxation rate) of various nuclei in enzyme complexes with these paramagnetic species. The distance between the monovalent cation activator site and enzyme-bound Cr3+-ATP was determined using three different monovalent cations, 133Cs+, 15NH4+, and Li+ (6Li and 7Li). Substantial paramagnetic effects were observed on the 1T1 values for all four nuclei and the M+ to Cr3+ distance was ~4 Å. Additional NMR data with 133Cs+ and Mn2+ were used to obtain the distance between the two cation activator sites, monovalent and divalent, and a Mn2+ to Cs+ distance of 8.0 Å was calculated, corroborating earlier work [F. M. Raushel, P. M. Anderson, and J. J. Villafranca (1983)Biochemistry22, 1872–1876]. Three separate sulfhydryl sites on carbamoyl-phosphate synthetase were spin-labeled with 3-maleimido-2,2,5,5-tetramethylpyrrolidinyl-1-oxy. Each of these enzyme-nitroxide complexes was used to examine the paramagnetic influence on the 1H of l-glutamate and l-ornithine and also the 1H and 31P of IMP and UMP. Small paramagnetic effects were observed on these nuclei and only lower limits on the distance from each nitroxide could be obtained. Thus both l-ornithine and l-glutamate are >11 Å from each sulfhydryl site while IMP and UMP are >15 Å from these sites. A topographical map is presented based on these data and data from our previous NMR studies that show the spatial relationship among the active-site components of carbamoyl-phosphate synthetase.  相似文献   

16.
《Inorganica chimica acta》1988,145(2):303-308
The luminescence of the following ions in ScBO3 is reported: Ce3+, Gd3+, Eu3+ and Cr3+. The lanthanide ions show luminescence spectra which reveal the influence of the fact that these ions occupy a small site (Sc3+). The vibronic lines are relatively strong. The 4f → 5d bands are characterized by small Stokes shifts. The Cr3+ ion, however, shows the influence of occupying a large site: the crystal field is weak and the emission is of the broad-band type (4T24A2). The vibrational structure in this band is analyzed.  相似文献   

17.
The crystal structure of γ-chymotrypsin, the monomeric form of chymotrypsin, has been determined and refined to a crystallographic R-factor of 0.18 at 1.9 Å resolution. The details of the catalytic triad involving Asp102, His57 and Ser195 agree well with the results found for trypsin (Chambers & Stroud, 1979) and Streptomyces griseus protease A (Sielecki et al., 1979). As in many of the other serine proteases, the Oγ of Ser195 does not appear to be hydrogen-bonded to His57.The three-dimensional structures of γ- and α-chymotrypsin (Birktoft & Blow, 1972) are closely similar. The largest backbone differences occur in the “calcium binding loop” (residues 75 to 78) and in the “autolysis loop” (residues 146, 149 and 150). Ala149 and Asn150 are disordered in γ-chymotrypsin, whereas they are stabilized by intermolecular interactions in α-chymotrypsin. The conformation of Ser218 is also different, presumably the indirect result of the dimeric interactions of α-chymotrypsin. These results are discussed in terms of the slow, pH-dependent interconversion of α- and γ-chymotrypsin.  相似文献   

18.
We measured by batch microcalorimetry the standard enthalpy change ΔH° of the binding of Mn2+ to apo-bovine α-lactalbumin; ΔH° = −90 ± 4kJ·mol−1. The binding constants, KMn2+, calculated from the calorimetric and circular dichroism titration curves, are (4.6±1) · 105M−1, respectively. Batch calorimetry confirms the competitive binding of Ca2+, Mn2+ and Na+ to the same site. The relatively small enthalpy change for Mn2+ binding compared to Ca2+ binding favours a model of a rigid and almost ideal Ca2+-complexating site, different from the well-known EF-hand structures. Cation binding to the high-affinity site most probably triggers the movement of an α-helix which is directly connected to the complexating loop.  相似文献   

19.
The binding of VIVO2+ to human serum transferrin (hTF) at the FeIII binding sites is addressed. Geometry optimization calculations were performed for the binding of VIVO2+ to the N-terminal lobe of hTF (hTFN), and indicate that in the presence of CO3 2? or HCO3 ?, VIV is bound to five atoms in a distorted geometry. The structures of VIVO–hTFN species optimized at the semiempirical level were also used to calculate the 51V and 14N A tensors by density functional theory methods, and were compared with the reported experimental values. Globally, of all the calculated VIVO–hTF structures, the one that yields the lowest calculated heats of formation and minimum deviations from the experimental values of the 51V and 14N A tensor components is the structure that includes CO3 2? as a synergistic anion. In this structure the V=O bond length is approximately 1.6 Å, and the vanadium atom is also coordinated to the phenolate oxygen atom of Tyr188 (at approximately 1.9 Å), the aspartate oxygen atom of Asp63 (at approximately 1.9 Å), the His249 Nτ atom (at approximately 2.1 Å), and a carbonate oxygen atom (at approximately 1.8 Å). The Tyr95 phenolic ocygen atom is approximately 3.3 Å from the metal center, and thus is very weakly bound to VIV. All of these oxygen atoms are able to establish dipolar interactions with groups of the protein.  相似文献   

20.
Dicoumarol derivatives were synthesized in the InCl3 catalyzed pseudo three-component reactions of 4-hydroxycoumarin with aromatic aldehydes in excellent yields. The reactions were performed in water under microwave irradiation. All synthesized compounds were characterized using NMR, IR, and UV–Vis spectroscopy, as well as with TD-DFT. Obtained dicoumarols were subjected to evaluation of their in vitro lipid peroxidation and soybean lipoxygenase inhibition activities. It was shown that five of ten examined compounds (3e, 3h, 3b, 3d, 3f) possess significant potential of antilipid peroxidation (84–97%), and that compounds 3b, 3e, 3h provided the highest soybean lipoxygenase (LOX-Ib) inhibition (IC50 = 52.5 µM) and 3i somewhat lower activity (IC50 = 55.5 µM). The bioactive conformations of the best LOX-Ib inhibitors were obtained by means of molecular docking and molecular dynamics. It was shown that, within the bioactive conformations interior to LOX-Ib active site, the most active compounds form the pyramidal structure made of two 4-hydroxycoumarin cores and a central phenyl substituent. This form serves as a spatial barrier which prevents LOX-Ib Fe2+/Fe3+ ion activity to generate the coordinative bond with the C13 hydroxyl group of the α-linoleate. It is worth pointing out that the most active compounds 3b, 3e, 3h and 3i can be candidates for further examination of their in vitro and in vivo anti-inflammatory activity and that molecular modeling study results provide possibility to screen bioactive conformations and elucidate the mechanism of dicoumarols anti-LOX activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号