首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphological, histochemical and biochemical studies of the testis of mice with testicular feminization (tfm/y) reveal a large accumulation of lipids in Leydig cells and in Sertoli cells. In Leydig cells of tfm/y mice, lipid droplets do not exhibit the special relationship with smooth endoplasmic reticulum that exists in normal adult Leydig cells. Compared to the surgically-cryptorchid control, the tfm/y testis contains more lipid in Leydig cells but less in Sertoli cells. There are also quantitative differences in testicular lipids in tmf/y and normal testes but no significant differences were noted between tfm/y and surgically-cryptorchid testes. The testes of both the genetically defective and surgically-cryptochid animals contain increased amounts of total lipids and phospholipids, and of free and esterified cholesterols. Exogenous testosterone has no effect on lipids or other characteristics of these cells. The present results suggest that the increased lipids in tfm/y mice result from a genetic disorder that asserts itself (1) in Leydig cells where it is associated with, and is probably a result of, impaired lipid metabolism and steroidogenesis, and (2) in Sertoli cells where it is perhaps attributable to arrested spermatogenesis and impaired steroidogenesis.  相似文献   

2.
Summary Leydig cells of the testis of newborn pseudohermaphrodite (tfm) rats have an ultrastructure similar to that of the normal, containing well developed organelles and inclusions. The cytoplasm is filled with smooth endoplasmic reticulum forming a network of interconnected tubules. Lipid droplets are surrounded by cisternae of smooth endoplasmic reticulum and are in close association with pleomorphic mitochondria. Many of the latter are cup-shaped and have tubular cristae and intramitochondrial dense bodies.Essentially, these are characteristics of normal Leydig cells. Accordingly, the production of testosterone by testes from newborn tfm rats is the same as that by testes from normal newborns and adults. However, it is significantly higher than that by testes of tfm adults. Also, the plasma testosterone levels of newborn tfm rats are the same as in the normal newborn, but lower than in normal adults and much lower than in adult tfm animals.Thus, since in the tfm rat the morphology of Leydig cells, androgen production, and maintenance of plasma levels of testosterone are normal in the newborn, but become abnormal with advancing age, it appears that defective androgen action rather than insufficient androgen production is the cause of male pseudohermaphroditism.  相似文献   

3.
Ultrastructural study of testicular biopsy specimens from an XX male showed hyalinized seminiferous tubules and tubules containing only mature Sertoli cells. These cells possessed large lipid inclusions as well as microfilament bundles which were perpendicular to the basement membrane and parallel to one another. The basal lamina was thickened and composed of several parallel layers with myofibroblast layers between them. The interstitium showed nodular to diffuse Leydig cell hyperplasia. Four types of Leydig cells were found: 1) normal Leydig cells with crystals of Reinke; 2) cells with abundant microcrystalline inclusions as well as microfilaments and concentric cisternae of smooth endoplasmic reticulum; 3) vacuolated cells containing numerous large lipid droplets; 4) immature Leydig cells. The different ultrastructural abnormalities found in the Sertoli and Leydig cells might be considered as the histological expression of a tubular-interstitial dysgenesis which is reflected in the high levels of gonadotropins and low levels of testosterone.  相似文献   

4.
Summary Ultrastructural and biochemical study of the adrenals in the pseudohermaphrodite (tfm) rat reveals hypertrophic adrenocortical cells. The cytoplasm of the cells in the zonae fasciculata and reticularis contains an exceptionally well developed smooth endoplasmic reticulum closely applied to mitochondria and lipid droplets. Mitochondria are more numerous than in normals and have especially abundant tubular cristae. More lipid droplets (appearing as empty vacuoles) are surrounded by pleomorphic mitochondria.The incubation study indicates that the capacity of rat adrenal cortex of producing androgens is greater in tfm than in normal animals. Hypophysectomy and castration result in a significant decrease in androgen biosynthesis by tfm rat adrenals and cause a reduced concentration of plasma testosterone. Administration of tropic hormones to hypophysectomizedcastrated rats appears to stimulate their adrenal androgenesis. It is suggested that in tfm rats the higher than normal luteinizing hormone (LH) together with adrenocorticotropic hormone (ACTH) stimulates the hypertrophy of cellular organelles in the adrenal cortex and causes an accompanying increase in androgenic steroids which may be responsible, at least in part, for the increased level of plasma androgens.  相似文献   

5.
At two years of age the interstitial tissue of Cercopithecus aethiops is composed principally of undifferentiated, fibroblast-like cells. Also present during this time are scattered differentiating Leydig cells, which are characterized by a large nucleus, numerous mitochondria, elements of smooth reticulum, and small cisternae of rough reticulum. A mean level of 1.69 ± 0.66 ng/ml of testosterone was found. At three years Leydig cells are much more numerous and developed; since all the elements of steroid secreting cells are present, even their morphology differs from that observed in mature cells. Lipid accumulation is characteristic during this period. A mean testosterone level of 2.28 ± 0.47 ng/ml was found. Mature Leydig cells are basically similar to that of other mammals, while they differ significantly from that of human Leydig cells.  相似文献   

6.
Summary The fine structure of the interstitial tissue of the testis of Physalaemus fuscumaculatus is described. Epithelioid cells identified as Leydig cells occur scattered in the interstitial tissue. Their cytoplasm contains a well developed smooth and rough surfaced endoplasmic reticulum arranged in whorls. The mitochondria present typical tubular cristae and unusual inclusions of a granular material. In spite of the distinctive characteristics reported here, it is assumed that the function of the Leydig cells is basically similar to that of the steroid synthetizing cells of the testicular interstitial tissue of higher vertebrates.An unusual feature is the presence of numerous melanophores randomly distributed in the capsule of the testis and in the interstitium. They are polyhedric cells with poorly developed organelles, numerous melanosomes, and long cytoplasmic processes.A large amount of collagen is present in the intercellular spaces closely related with undifferentiated cells, most of which are assumed to be fibroblasts.This work was supported by a Grant of the Consejo Nacional de Investigationes Científicas y Técnicas, and by Grant M-63-121 from the Population Council.Career investigators of the Consejo Nacional de Investigationes Científicas y Técnicas.Research Fellow of the same Institution.  相似文献   

7.
The ultrastructure of testicular interstitium in young and aged adult rats was analysed using morphometric methods, and the plasma testosterone concentration was measured. With increasing age there was an augumentation in the volume of collagen fibrils in the intercellular matrix and in blood vessels. During the aging process (approximately two years) the average volume of the Leydig cell decreased from 1364 m3 to 637 m3, but the number of Leydig cells in paired testes increased from 53x106 to 113x106. The absolute volume of smooth surfaced endoplasmic reticulum (SER) per Leydig cell amounted in aged rats to 78% of that in young adult rats. The total amount of SER in paired testes increased by 62% with aging. The present analysis suggests that the ability of SER to maintain peripheral testosterone concentration decreases with age. In young adult rats the absolute volume of peroxisomes per Leydig cell correlated significantly with the concentration of testosterone in blood and also with the absolute volume of SER per Leydig cell. These results combined with ultrastructural observations of close apposition of peroxisomes and SER suggest that peroxisomes have a role in testosterone secretion by Leydig cells.Visiting scientist to Laboratory of Electron Microscopy (Director: Prof. L.J. Pelliniemi)  相似文献   

8.
Summary Human testicular specimens were obtained from biopsies and autopsies covering the period from birth to adulthood. The number of testosterone-containing Leydig cells was determined using the peroxidase-anti-peroxidase method. This number decreased markedly from 3–6 months of age to the end of the first year of life and, up to 6 years of age, only a small number of testosterone-containing cells was found. From 6 years onwards the number of Leydig cells progressively increased. Ultrastructural examination revealed four types of Leydig cells: (1) fetal-type Leydig cells (from birth to 1 year of age) with round nuclei, abundant smooth endoplasmic reticulum and mitochondria with tubular cristae; (2) infantile-type Leydig cells (from birth to 8–10 years of age), showing a multilobated nucleus, moderately abundant smooth endoplasmic reticulum, some lipid droplets and mitochondria with parallel cristae; (3) prepubertal, partially differentiated Leydig cells (from 6 years of age onwards) with regularly-outlined round nuclei, abundant smooth endoplasmic reticulum, mitochondria with tubular cristae, and some lipid droplets and lipofuscin granules; and (4) mature adult Leydig cells (from 8–10 years of age onwards). The ultrastructure of the infantile-type Leydig cells and the lack of delay between the disappearance of the fetal-type Leydig cells and the appearance of infantile-type Leydig cells suggest that fetal-type Leydig cells give rise to the infantile-type Leydig cells. Before puberty, myofibroblast-like precursor cells differentiate into the prepubertal, partially differentiated Leydig cells, which complete their differentiation into the adult Leydig cells.This work was supported by grants from the Comisión Asesora de Investigation Científica y Técnica, and the Fondo de Investigaciones Sanitarias de la Seguridad Social, Madrid, Spain  相似文献   

9.
The morphology of Leydig cells of the testis of sexually mature and sexually immature spring hares was studied. The cytoplasm of the Leydig of cells the sexually immature spring hares was packed with large lipid droplets leaving little space for the other organelles. Smooth endoplasmic reticulum was poorly developed and occasionally formed concentric layers of fenestrated cisterns around the large lipid droplets. The Leydig of cells the sexually mature spring hares were almost devoid of lipid droplets and their cytoplasm was occupied by abundant tubular smooth endoplasmic reticulum. Cells which shared characteristics with both immature Leydig cells and undifferentiated mesenchymal cells were observed in the limiting membrane of the seminiferous tubulus. These Leydig-like cells may play a role in the differentiation of Leydig cells in the spring hare.  相似文献   

10.
用光镜及透射电镜观察了乌梢蛇(Zaocys dhumnades)精巢间质细胞的显微与超微结构,并利用放射免疫测定法测定了血清中睾酮浓度.结果表明,在一个年生殖周期中,乌梢蛇间质组织所占区域相对大小、间质细胞数量和显微结构均存在较明显的变化;5月份的间质细胞具有发达的管状嵴线粒体、丰富的滑面内质网、大量的脂滴等合成和分泌...  相似文献   

11.
The male sex steroid, testosterone (T), is synthesized from cholesterol in the testicular Leydig cell under control of the pituitary gonadotropin LH. Unlike most cells that use cholesterol primarily for membrane synthesis, steroidogenic cells have additional requirements for cholesterol, because it is the essential precursor for all steroid hormones. Little is known about how Leydig cells satisfy their specialized cholesterol requirements for steroid synthesis. We show that in mice with a unique hypomorphic androgen mutation, which disrupts the feedback loop governing T synthesis, that genes involved in cholesterol biosynthesis/uptake and steroid biosynthesis are up-regulated. We identify LH as the central regulatory molecule that controls both steroidogenesis and Leydig cell cholesterol homeostasis in vivo. In addition to the primary defect caused by high levels of LH, absence of T signaling exacerbates the lipid homeostasis defect in Leydig cells by eliminating a short feedback loop. We show that T signaling can affect the synthesis of steroids and modulates the expression of genes involved in de novo cholesterol synthesis. Surprisingly, accumulation of active sterol response element-binding protein 2 is not required for up-regulation of genes involved in cholesterol biosynthesis and uptake in Leydig cells.  相似文献   

12.
Summary Postovulatory follicles of the tilapia, Oreochromis mossambicus, were incubated with graded doses of salmon gonadotropin to identify the steroid hormones released by this tissue. In addition, the effects of either cytochalasin B or colchicine on steroid hormone release were studied. After the incubation, the tissue was examined by electron microscopy. Postovulatory follicles released testosterone and estradiol-17B in a dose-dependent manner with gonadotropin. There was no detectable release of progesterone or 17a-OH-progesterone. When stimulated with high doses of gonadotropin, the steroidogenic cells showed an increase in smooth endoplasmic reticulum, Golgi complexes, and lipid droplets. Also, microfilaments became arranged in orderly bundles and were found close to the numerous secretory vesicles and lipid droplets. Upon incubation with gonadotropin and either colchicine or cytochalasin B, the cells still appeared steroidogenic, but the filaments were not organized nor associated with vesicles or lipid droplets. Release of steroid hormone decreased significantly. Also in these tissues, vesicles were no longer numerous in the apical region of the granulosa cells, but were located primarily near smooth endoplasmic reticulum and Golgi complexes. This suggests that disruption of the cytoskeleton results in reduced steroid hormone synthesis or release.  相似文献   

13.
The ultrastructure of follicle cells in the ovary at different developmental stages of Branchiostoma has been observed in detail with a transmission electron microscope. The results indicate that only one kind of follicle cell exists with structural features related to steroid hormone biosynthesis: (i) oval or round mitochondria with tubules; (ii) smooth surfaced endoplasmic reticulum; (iii) several large lipid droplets in the cytoplasm; (iv) a well de-veloped Golgi complex and tubular rough surfaced endoplasmic reticulum, as can be found in mammalian theca interna cells. In addition, as steroid hormone synthesizing cells, they obviously play an important role in the phagocytosis of relict gametes and cellular debris and may have a nutritive function for the oocytes. They can produce abundant secre-tory granules in stages III-IV ovaries. In mature ovaries they transform into flat epithelial cells with numerous micro-filaments which may play a role in ovulation.  相似文献   

14.
Summary The bolus administration of prolactin (PRL) to adult rats did not cause any apparent change in the basal and luteinizing hormone (LH)-stimulated blood levels of testosterone (as estimated by radioimmune assay). Prolonged PRL infusion did not affect either basal testosterone plasma concentration or the morphology of Leydig cells (as evaluated by electron microscopy and stereology). Conversely, prolonged PRL treatment notably increased the gonadotrophic effects of chronic LH administration; this mainly consisted of a rise in the blood concentration of testosterone and a conspicuous hypertrophy of Leydig cells. The LH-induced increase in the volume of Leydig cells was the result of an increase in the volumes of all the organelles involved in steroid synthesis (i.e., smooth endoplasmic reticulum, peroxisomes and mitochondria). However, the trophic effects of PRL infusion exclusively concerned smooth endoplasmic reticulum and peroxisomes. In the light of these findings, the hypothesis is advanced that the mechanism underlying the gonadotrophic action of PRL involves an enhancement of the endogenous cholesterol synthesis, which could provide an abundance of precursors for testosterone synthesis, the post-cholesterol steps of which, in turn, would be exclusively controlled by LH.  相似文献   

15.
Agustín Aoki 《Protoplasma》1968,66(3):263-267
Summary The administration of chorionic gonadotrophin to prepuberal mice results in precocious maturation of the testicular interstitial cells. The cytoplasm of the nine-day-old cells is characterized by abundant lipid droplets, large numbers of glycogen particles and mitochondria. By contrast, the membranous organelles are poorly developed.Human chorionic gonadotrophin brings about mobilization of lipid droplets and glycogen particles, and differentiation of large areas of agranular endoplasmic reticulum.The present observations are in agreement with the reports that human chorionic gonadotrophin increases the secretion of testosterone and that the agranular endoplasmic reticulum is the site of storage of steroid and of the enzymes involved in the biosynthesis of androgens.  相似文献   

16.
Summary Ovaries were obtained from normal adult dairy cows at all days of the estrous cycle. The largest Graafian follicle and corpus luteum were excised and prepared for electron microscopic study.In the follicle wall, membrana granulosa cells contained granular endoplasmic reticulum and mitochondria with villous or lamellar cristae. The theca interna cells during proestrus and estrus contained ribosomes separated from endoplasmic reticulum. The latter during these periods assumed tubular and tortuous shapes. Mitochondria during these periods assumed rounded shapes, were occasionally cup-shaped, and developed tubular cristae.In the corpus luteum, the large luteal cells during metestrus and diestrus contained an abundance of agranular, tubular, branching membranes of endoplasmic reticulum and Golgi apparatus. Mitochondria were large, with tubular cristae, but smaller mitochondria, with irregular or villous cristae, were also present. Transitional bodies of the latter mitochondria to another form were observed. Cup-shaped and annular mitochondria were present during diestrus. In the small luteal cells, large vesicular membrane formations were present and often associated with lipid bodies. The cells were lipid-laden. Lysosomes and granular bodies were present during luteal regression.The observed features of the granulosa cells are related to protein synthesis, those of the pre-ovulatory theca interna cells and metestrus-diestrus large luteal cells to steroid synthesis, and those of the small luteal cells to lipid storage.This investigation was supported by a General Research Support Grant to the College of Veterinary Medicine, University of Minnesota, and Research Grant No. GM-07009, of the United States Public Health Service. Approved for publication as Scientific Journal Series Paper No. 6344, Minnesota Agricultural Experiment Station. The work reported is taken from the senior author's Ph. D. thesis.  相似文献   

17.
Summary Leydig cells of the bat, Myotis adversus, have been examined by electron microscopy throughout fourteen months. During the breeding season the Leydig cells become hypertrophied and are characterised by prominent areas of agranular endoplasmic reticulum and numerous small, membrane-bound granules. Microperoxisomes are also observed. During the period of testicular regression. Leydig cell size and the number of membrane-bound granules are greatly reduced. Lipid droplets and dense bodies are more numerous.  相似文献   

18.
Components of the testis and cytoplasmic organelles in Leydig cells were quantified with morphometric techniques in hamster, rat, and guinea pig. Testosterone secretory capacity per gram of testis and per Leydig cell in response to luteinizing hormone (LH) (100 ng/ml) stimulation was determined in these three species from testes perfused in vitro. Numerous correlations were measured among structures, and between structures and testosterone secretion, to provide structural evidence of intratesticular control of Leydig cell function. Testosterone secretion per gm testis and per Leydig cell was significantly different in the three species: highest in the guinea pig, intermediate in the rat, and lowest in the hamster. The volume of seminiferous tubules per gm testis was negatively correlated, and the volumes of interstitium, Leydig cells, and lymphatic space per gm testis were positively correlated with testosterone secretion. No correlations were observed between volumes of blood vessels, elongated spindleshaped cells, or macrophages per gm testes and testosterone secretion. The average volume of a Leydig cell and the volume and surface area of smooth endoplasmic reticulum (SER) and peroxisomes per Leydig cell were positively correlated, and the volume of lysosomes and surface area of inner mitochondrial membrane per Leydig cell were negatively correlated with testosterone secretion. No correlations were observed between volume and surface area of rough endoplasmic reticulum (RER), Golgi apparatus, and lipid, and volume of ribosomes, cytoplasmic matrix, and the nucleus with testosterone secretion per Leydig cell. These results suggest that Leydig cell size is more important than number of Leydig cells in explaining the difference in testosterone-secreting capacity among the three species, and that this increase in average volume of a Leydig cell is associated specifically with increased volume and surface area of SER and peroxisomes. An important unresolved question is what is the role of peroxisomes in Leydig cell steroidogenesis.  相似文献   

19.
Histogenesis of human extraparenchymal Leydig cells   总被引:2,自引:0,他引:2  
M Nistal  R Paniagua 《Acta anatomica》1979,105(2):188-197
From 64 consecutive autopsies of patients with neither testicular nor hormonal pathology, 26 showed extraparenchymal Leydig cells, located mainly in the epididymis and in the spermatic cord. The ultrastructural study of these specimens plus those obtained from 2 patients affected with functional testicular tumors leads to the following conclusions: (1) The origin of ectopic Leydig cells is not interstitial Leydig cells having infiltrated the testicular nerves and migrated along them towards ectopic locations. (2) The ectopic Leydig cells are considered to develop from undifferentiated precursor cells, located extraparenchymally, mainly inside and beside the testicular nerves. These precursor cells are similar to those observed in the testicular interstitium and have an ovoid shape and some cytoplasmic projections. The cytoplasm contains vesicles of smooth endoplasmic reticulum, lysosomes, lipid droplets and abundant microfilament bundles. The transformation from these cells into mature Leydig cells implies a progressive differentiation of the cytoplasmic components involved in steroid biosynthesis.  相似文献   

20.
Seasonal changes of the testicular interstitial tissue were studied by electron microscopy. During the breeding season in spring, clusters of Leydig cells are surrounded by wide lymphatic sinusoids. In sexually quiescent moles, these sinusoids collapse, and the abundant Leydig cells become closely packed and occupy most of the testis. During sexual activity, the Leydig cells contain abundant smooth endoplasmic reticulum (SER), mitochondria with tubular cristae, and lipid droplets. Some areas of the cytoplasm are occupied exclusively by tubular SER, arranged in parallel. During regression the SER appears tortuous, and large lipid droplets are found in the cytoplasm, although these gradually become smaller. During the long period of sexual quiescence, the size and abundance of Leydig cells and the appearance of SER, lipid droplets and mitochondria were similar to those observed during sexual activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号