首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of spin-labeled local anesthetics on sodium currents of internally perfused squid axons were studied using the voltage-clamp technique. Internal application (10 mum) of the most potent spin-labeled local anesthetic used in this study produced a small initial block of sodium currents. However, after sixty repetitive pulses (to + 80 mV) given at 1 Hz, the sodium currents were drastically reduced. In addition to this frequency-dependent phenomenon, the anesthetic effect on the sodium currents was also sensitive to the voltage of the pulses. Both the frequency- and voltage-dependent properties remained intact after removal of sodium inactivation with pronase. The recovery of sodium currents from this frequency-dependent anesthetic effect followed a single exponential curve with a surprisingly long time constant of about 10 min. Such a long recovery time, which is longer than any known sodium inactivation process, led us to suggest that the recovery process represents the dissociation of drug molecules from their binding sites. We have also found that increasing hydrophobic character of the homologues series of spin-labeled local anesthetics enhances the frequency- and voltage-dependent block of sodium currents. This effect strongly suggests that hydrophobic interaction is an integral component of the binding site. These probes with their selective effects on the sodium currents, are expected to be highly useful in studying the molecular structure of the sodium channels.  相似文献   

2.
Paragracine, isolated from the coelenterate species Parazoanthus gracilis, selectively blocks sodium channels of squid axon membranes in a frequency-dependent manner. The blocking action depends on the direction and magnitude of the sodium current rather than on the absolute value of the membrane potential. Paragracine blocks the channels only from the axoplasmic side and does so only when the current is in the outward direction. This block may be reversed by generating inward sodium currents. In axons in which sodium inactivation has been removed by pronase, the frequency-dependent block persists, and a slow time-dependent block is observed. A slow interaction with its binding site in the channel may account for the frequency-dependent block.  相似文献   

3.
Effects of different local anesthetics of sodium permeability were studied in single nerve fibres of frog by the method of voltage clamp. Inhibition of sodium current by externally applied tertiary anesthetics, procaine and trimecaine, was the sum of a potentially independent block (reduced PrmNa) and slow sodium inactivation with time constants ranging from tens to hundreds of ms depending on membrane potential (at room temperature). Externally applied uncharged benzocaine produced a potentially independent block only. According to dose-response curves both processes are one-to-one reactions. In the case of trimecaine equilibrium constant the reaction responsible for reduction of PNa is about 0.3 mM, while that for slow inactivation is more than ten times less (0.02 mM). Increasing pH from 5.6 to 8.5 markedly accelerated the slow inactivation process at all potential values. Divalent cations Ca2+ and Ni2+ shifted the steady-state slow inactivation curve along the potential axis and simultaneously reduced slow inactivation at the saturation level. Permanently charged quaternary trimecaine was ineffective when applied externally. Internally applied tertiary anesthetics and quaternary trimecaine as well as externally applied quaternary derivative of lidocaine QX-572 produced a progressively irreversible block enhanced by depolarization and inhibition reversibly increased by repetitive short-term depolarization (frequency-dependent inhibition). Inhibition of sodium currents by repetitive stimulation observed also in the case of externally applied tertiary anesthetics is due mainly to slow inactivation. The data suggests the existence of several types of receptor sites through which local anesthetics exert their blocking action on sodium permeability.  相似文献   

4.
Local anesthetics bind to ion channels in a state-dependent manner. For noninactivating voltage-gated K channels the binding mainly occurs in the open state, while for voltage-gated inactivating Na channels it is assumed to occur mainly in inactivated states, leading to an allosterically caused increase in the inactivation probability, reflected in a negative shift of the steady-state inactivation curve, prolonged recovery from inactivation, and a frequency-dependent block. How local anesthetics bind to N-type inactivating K channels is less explored. In this study, we have compared bupivacaine effects on inactivating (Shaker and Kv3.4) and noninactivating (Shaker-IR and Kv3.2) channels, expressed in Xenopus oocytes. Bupivacaine was found to block these channels time-dependently without shifting the steady-state inactivation curve markedly, without a prolonged recovery from inactivation, and without a frequency-dependent block. An analysis, including computational testing of kinetic models, suggests binding to the channel mainly in the open state, with affinities close to those estimated for corresponding noninactivating channels (300 and 280 μM for Shaker and Shaker-IR, and 60 and 90 μM for Kv3.4 and Kv3.2). The similar magnitudes of Kd, as well as of blocking and unblocking rate constants for inactivating and noninactivating Shaker channels, most likely exclude allosteric interactions between the inactivation mechanism and the binding site. The relevance of these results for understanding the action of local anesthetics on Na channels is discussed.  相似文献   

5.
Summary The effects of spin-labeled local anesthetics on sodium currents of internally perfused squid axons were studied using the voltage-clamp technique. Internal application (10 m) of the most potent spin-labeled local anesthetic used in this study produced a small initial block of sodium currents. However, after sixty repetitive pulses (to +80 mV) given at 1 Hz, the sodium currents were drastically reduced. In addition to this frequency-dependent phenomenon, the anesthetic effect on the sodium currents was also sensitive to the voltage of the pulses. Both the frequency- and voltage-dependent properties remained intact after removal of sodium inactivation with pronase. The recovery of sodium currents from this frequency-dependent anesthetic effect followed a single exponential curve with a surprisingly long time constant of about 10 min. Such a long recovery time, which is longer than any known sodium inactivation process, led us to suggest that the recovery process represents the dissociation of drug molecules from their binding sites. We have also found that increasing hydrophobic character of the homologues series of spin-labeled local anesthetics enhances the frequency- and voltage-dependent block of sodium currents. This effect strongly suggests that hydrophobic interaction is an integral component of the binding site. These probes with their selective effects on the sodium currents, are expected to be highly useful in studying the molecular structure of the sodium channels.  相似文献   

6.
Using the electron spin resonance technique of the spin probe (TEMPO) is shown that local anaesthetics lidocaine, tetracaine, dibucaine, heptacaine and carbizocaine decrease the gel--liquid crystal phase transition temperature and increase the width of the phase transition of the dipalmitoylphosphatidylcholine (DPPC) model membrane. These effects roughly correlate with the efficiencies of the anesthetics to block action potential propagation in the nerves.  相似文献   

7.
The effect on exercise tolerance of racemic propranolol has been assessed in eight angina pectoris patients and compared with that of dexpropranolol (the dextro isomer of propranolol), practolol (I.C.I. 50172), and saline. Dexpropranolol has the same local anaesthetic action as propranolol with negligible β-adrenergic receptor blocking activity, while practolol is a cardio-selective β-adrenergic blocking agent which does not have local anaesthetic activity.Saline and dexpropranolol had no significant effect on exercise time; racemic propranolol and practolol improved exercise tolerance in six subjects, the response to the two drugs being very similar in individual patients. It was concluded that the beneficial effect of propranolol in angina pectoris results from its action as a β-adrenergic receptor blocking agent and is not due to its local anaesthetic, or quinidine-like, activity.  相似文献   

8.
Local anesthetic solutions were applied suddenly to the outside of single myelinated nerve fibers to measure the time course of development of block of sodium channels. Sodium currents were measured under voltage clamp with test pulses applied several times per second during the solution change. The rate of block was studied by using drugs of different lipid solubility and of different charge type, and the external pH was varied from pH 8.3 to pH 6 to change the degree of ionization of the amine compounds. At pH 8.3 the half-time of action of amine anesthetics such as lidocaine, procaine, tetracaine, and others was always less than 2 s and usually less than 1 s. Lowering the pH to 6.0 decreased the apparent potency and slowed the rate of action of these drugs. The rate of action of neutral benzocaine was fast (1 s) and pH independent. The rate of action of cationic quaternary QX-572 was slow (greater than 200 s) and also pH independent. Other quaternary anesthetic derivatives showed no action when applied outside. The result is that neutral drug forms act much more rapidly than charged ones, suggesting that externally applied local anesthetics must cross a hydrophobic barrier to reach their receptor. A model representing diffusion of drug into the nerve fiber gives reasonable time courses of action and reasonable membrane permeability coefficients on the assumption that the hydrophobic barrier is the nodal membrane. Arguments are given that there may be a need for reinterpretation of many published experiments on the location of the anesthetic receptor and on which charge form of the drug is active to take into account the effects of unstirred layers, high membrane permeability, and high lipid solubility.  相似文献   

9.
Pharmacological treatment with various antiarrhythmic agents for the termination or prevention of atrial fibrillation (AF) is not yet satisfactory. This is in part because the drugs may not be sufficiently selective for the atrium, and they often cause ventricular arrhythmias. The ultrarapid-delayed rectifying potassium current (I(Kur)) is found in the atrium but not in the ventricle, and it has been recognized as a potentially promising target for anti-AF drugs that would be without ventricular proarrhythmia. Several new agents that specifically block I(Kur) have been developed. They block I(Kur) in a voltage- and time-dependent manner. Here we use mathematical models of normal and electrically remodeled human atrial action potentials to examine the effects of the blockade kinetics of I(Kur) on atrial action potential duration (APD). It was found that after AF remodeling, an I(Kur) blocker with fast onset can effectively prolong APD at any stimulus frequency, whereas a blocker with slow onset prolongs APD in a frequency-dependent manner only when the recovery is slow. The results suggest that the voltage and time dependence of I(Kur) blockade should be taken into account in the testing of anti-AF drugs. This modeling study suggests that a simple voltage-clamp protocol with a short pulse of approximately 10 ms at 1 Hz may be useful to identify the effective anti-AF drugs among various I(Kur) blockers.  相似文献   

10.
In order to test the requirement of Na channel inactivation for the action of local anesthetics, we investigated the inhibitory effects of quaternary and tertiary amine anesthetics on normally inactivating and noninactivating Na currents in squid axons under voltage clamp. Either the enzymatic mixture pronase, or chloramine-T (CT), a noncleaving, oxidizing reagent, was used to abolish Na channel inactivation. We found that both the local anesthetics QX-314 and etidocaine, when perfused internally at 1 mM, elicited a "tonic" (resting) block of Na currents, a "time-dependent" block that increased during single depolarizations, and a "use-dependent" (phasic) block that accumulated as a result of repetitive depolarizations. All three effects occurred in both control and CT-treated axons. As in previous reports, little time-dependent or phasic block by QX-314 appeared in pronase-treated axons, although tonic block remained. Time-dependent block was greatest and fastest at large depolarizations (Em greater than +60 mV) for both the control and CT-treated axons. The recovery kinetics from phasic block were the same in control and CT-modified axons. The voltage dependence of the steady state phasic block in CT-treated axons differed from that in the controls; an 8-10% reduction of the maximum phasic block and a steepening and shift of the voltage dependence in the hyperpolarizing direction resulted from CT treatment. The results show that these anesthetics can bind rapidly to open Na channels in a voltage-dependent manner, with no requirement for fast inactivation. We propose that the rapid phasic blocking reactions in nerve are consequences primarily of channel activation, mediated by binding of anesthetics to open channels, and that the voltage dependence of phasic block arises directly from that of channel activation.  相似文献   

11.
Inhibition of whole-cell calcium currents in enzymatically dispersed frog atrial myocytes by D-600, diltiazem, and nifedipine was studied using a single-micropipette voltage-clamp technique. The objective of these experiments was to test the applicability of a modulated-receptor hypothesis similar to that proposed for local anesthetic interactions with sodium channels to account for the tonic and frequency-dependent interactions of these organic compounds with myocardial calcium channels. Data consistent with such a hypothesis include: (a) prominent use-dependent block of iCa by D-600 and diltiazem, which are predominantly charged at physiological pH; (b) iCa block by an externally applied, permanently charged dihydropyridine derivative is greatly attenuated; (c) all three antagonists produce large negative shifts in the voltage dependence of iCa availability; (d) block of iCa by these compounds is state-dependent; (e) reactivation of iCa in the presence of all three antagonists is biexponential, which suggests that drug-free channels recover with a normal time course and drug-bound channels recover more slowly; and (f) the kinetics of the drug-induced slow iCa recovery process may be determined largely by factors such as size and molecular weight, in addition to lipid solubility of the compounds. Experiments in which the pH was modified, however, reveal some important differences for the interaction of organic calcium antagonists with myocardial calcium channels. Acidification, in addition to changing the proportion of charged and neutral antagonist in solution, was found to selectively antagonize tonic inhibition of iCa by diltiazem and nifedipine, without changing the kinetics of the drug-induced slow iCa reactivation process. It is concluded that two distinct receptor sites may be involved in block of iCa by some of these compounds: a proton-accessible site and a proton-inaccessible site.  相似文献   

12.
Experiments by the voltage clamp method showed that external application of quinidine (5 × 10–5 M) to the Ranvier node membrane of the frog nerve fiber inhibitis both sodium and potassium currents. Blocking of the sodium current is considerably intensified by repetitive depolarization of the membrane (1–10 Hz); the rate of development of the block increases with an increase in stimulation frequency. After the end of stimulation the sodium current gradually returns to its initial level (with a time constant of the order of 30 sec at 12°C). Unlike repetitive depolarization with short (5 msec) stimuli, a prolonged shift (1 sec) of potential toward depolarization has no significant effect on quinidine blocking of the sodium current. Analysis of the current-voltage characteristic curves showed that quinidine blocks outward sodium current more strongly than inward. Batrachotoxin protects sodium channels against the blocking action of quinidine in a concentration of 10–5 M. Inhibition of the outward potassium currents by quinidine is distinctly time-dependent in character: Initially the potassium current rises to a maximum, then falls steadily to a new stationary level. The results agree with the view that quinidine, applied externally, penetrates through the membrane in the basic form and blocks open sodium and potassium channels from within in the charged (protonated) form. The similarity in principle between the action of quinidine and local anesthetics on the sodium suggests that these compounds bind with the same receptor, located in the inner mouth of the sodium channel.A. V. Vishnevskii Institute of Surgery, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 324–330, May–June, 1982.  相似文献   

13.
The natural flavone acacetin has been demonstrated to inhibit transient outward potassium current (Ito) in human atrial myocytes. However, the molecular determinants of acacetin for blocking Ito are unknown. The present study was designed to investigate the properties and molecular determinants of this compound for blocking hKv4.3 channels (coding Ito) stably expressed in HEK 293 cells using the approaches of whole-cell patch voltage-clamp technique and mutagenesis. It was found that acacetin inhibited hKv4.3 current by binding to both the closed and open channels, and decreased the recovery from inactivation. The blockade of hKv4.3 channels by acacetin was use- and frequency-dependent, and IC50s of acacetin for inhibiting hKv4.3 were 7.9, 6.1, 3.9, and 3.2 µM, respectively, at 0.2, 0.5, 1, and 3.3 Hz. The mutagenesis study revealed that the hKv4.3 mutants T366A and T367A in the P-loop helix, and V392A, I395A and V399A in the S6-segment had a reduced channel blocking efficacy of acacetin (IC50, 44.5 µM for T366A, 25.8 µM for T367A, 17.6 µM for V392A, 16.2 µM for I395A, and 19.1 µM for V399A). These results demonstrate the novel information that acacetin may inhibit the closed channels and block the open state of the channels by binding to their P-loop filter helix and S6 domain. The use- and rate-dependent blocking of hKv4.3 by acacetin is likely beneficial for managing atrial fibrillation.  相似文献   

14.
The molecular site of anesthetic action remains an area of intense research interest. It is not clear whether general anesthetics act through direct binding to proteins or by perturbing the membrane properties of excitable tissues. Several studies indicate that anesthetics affect the properties of either membrane lipids or proteins. However, gaps remain in our understanding of the molecular mechanism of anesthetic action. Recent developments in membrane biology have led to the concept of small-scale domain structures in lipid and lipid--protein coupled systems. The role of such domain structures in anesthetic action has not been studied in detail. In the present study, we investigated the effect of anesthetics on lipid domain structures in model membranes using the fluorescent spectral properties of Laurdan (6-dodecanoyl-2-dimethylamino naphthalene). Propofol, a general anesthetic, promoted the formation of fluid domains in model membranes of dipalmitoyl phosphatidyl choline (DPPC) or mixtures of lipids of varying acyl chains (DPPC:DMPC dimyristoyl phosphatidyl choline 1:1). The estimated size of these domains is 20--50 A. Based on these studies, we speculate that the mechanism of anesthetic action may involve effects on protein--lipid coupled systems through alterations in small-scale lipid domain structures.  相似文献   

15.
Coherence between the bioelectric activity of sensorimotor cortex and contralateral muscles can be observed around 20 Hz. By contrast, physiological tremor has a dominant frequency around 10 Hz. Although tremor has multiple sources, it is partly central in origin, reflecting a component of motoneuron discharge at this frequency. The motoneuron response to ∼20 Hz descending input could be altered by non-linear interactions with ∼10 Hz motoneuron firing. We investigated this further in eight healthy human subjects by testing the effects of the beta-adrenergic agents propranolol (non-selective β-antagonist) and salbutamol (β2-agonist), which are known to alter the size of physiological tremor. Corticomuscular coherence was assessed during an auxotonic precision grip task; tremor was quantified using accelerometry during index finger extension. Experiments with propranolol used a double-blind, placebo-controlled crossover design. A single oral dose of propranolol (40 mg) significantly increased beta band (15.3–32.2 Hz) corticomuscular coherence compared with placebo, but reduced tremor in the 6.2–11.9 Hz range. Salbutamol (2.5 mg) was administered by inhalation. Whilst salbutamol significantly increased tremor amplitude as expected, it did not change corticomuscular coherence. The opposite direction of the effects of propranolol on corticomuscular coherence and tremor, and the fact that salbutamol enhances tremor but does not affect coherence, implies that the magnitude of corticomuscular coherence is little influenced by non-linear interactions with 10 Hz oscillations in motoneurons or the periphery. Instead, we suggest that propranolol and salbutamol may affect both tremor and corticomuscular coherence partly via a central site of action.  相似文献   

16.
Amide-type pipecoloxylidide local anesthetics, bupivacaine, and ropivacaine, show cardiotoxic effects with the potency depending on stereostructures. Cardiotoxic drugs not only bind to cardiomyocyte membrane channels to block them but also modify the physicochemical property of membrane lipid bilayers in which channels are embedded. The opposite configurations allow enantiomers to be discriminated by their enantiospecific interactions with another chiral molecule in membranes. We compared the interactions of local anesthetic stereoisomers with biomimetic membranes consisting of chiral lipid components, the differences of which might be indicative of the drug design for reducing cardiotoxicity. Fluorescent probe-labeled biomimetic membranes were prepared with cardiolipin and cholesterol of varying compositions and different phospholipids. Local anesthetics were reacted with the membrane preparations at a cardiotoxically relevant concentration of 200 μM. The potencies to interact with biomimetic membranes and change their fluidity were compared by measuring fluorescence polarization. All local anesthetics acted on lipid bilayers to increase membrane fluidity. Chiral cardiolipin was ineffective in discriminating S(-)-enantiomers from their antipodes. On the other hand, cholesterol produced the enantiospecific membrane interactions of bupivacaine and ropivacaine with increasing its composition in membranes. In 40 mol% and more cholesterol-containing membranes, the membrane-interacting potency was S(-)-bupivacaine相似文献   

17.
The permeability of the neutral form of tertiary amine local anesthetics across squid axon membranes was studied by utilizing three different experimental methods: (1) narcotic action of axon excitability was measured by monitoring the time derivative of action potential and the results were analyzed in terms of a diffusion reaction equation of local anesthetics to obtain their permeabilities; (2) the influx of local anesthetic into the axon was measured by use of the radioisotope tracer technique; and (3) the desorption rates of the neutral form of local anesthetics from lipid monolayers were measured and the desorption rate was correlated with permeability.The relative permeabilities obtained for procaine, lidocaine and tetracaine by the above three methods were comparable. The order of relative permeabilities was procaine >lidocaine >tetracaine, and had an inverse correlation with the partition coefficients of anesthetics at oil/water phases. Some discussion concerning the concept of permeability is made when the partition coefficient of a permeant molecule is high.  相似文献   

18.
The purpose of the present study was to examine the characteristics of Na+ channel modification by batrachotoxin (BTX) in cardiac cells, including changes in channel gating and kinetics as well as susceptibility to block by local anesthetic agents. We used the whole cell configuration of the patch clamp technique to measure Na+ current in guinea pig myocytes. Extracellular Na+ concentration and temperature were lowered (5-10 mM, 17 degrees C) in order to maintain good voltage control. Our results demonstrated that 1) BTX modifies cardiac INa, causing a substantial steady-state (noninactivating) component of INa, 2) modification of cardiac Na+ channels by BTX shifts activation to more negative potentials and reduces both maximal gNa and selectivity for Na+; 3) binding of BTX to its receptor in the cardiac Na+ channel reduces the affinity of local anesthetics for their binding site; and 4) BTX-modified channels show use-dependent block by local anesthetics. The reduced blocking potency of local anesthetics for BTX-modified Na+ channels probably results from an allosteric interaction between BTX and local anesthetics for their respective binding sites in the Na+ channel. Our observations that use-dependent block by local anesthetics persists in BTX-modified Na+ channels suggest that this form of extra block can occur in the virtual absence of the inactivated state. Thus, the development of use-dependent block appears to rely primarily on local anesthetic binding to activated Na+ channels under these conditions.  相似文献   

19.
The voltage- and frequency-dependent blocking actions of disopyramide were assessed in canine Purkinje fibers within the framework of concentrations, membrane potentials, and heart rates which have relevance to the therapeutic actions of this drug. Vmax was used to assess the magnitude of sodium channel block. Disopyramide produced a concentration- and rate-dependent increase in the magnitude and kinetics of Vmax depression. Effects on activation time (used as an estimate of drug effect on conduction) were exactly analogous to effects on Vmax. A concentration-dependent increase in tonic block was also observed. Despite significant increases in tonic block at more depolarized potentials, rate-dependent block increased only marginally with membrane potential over the range of potentials in which propagated action potentials occur. Increases in extracellular potassium concentration accentuated drug effect on Vmax but attenuated drug effect on action potential duration. Recovery from rate-dependent block followed two exponential processes with time constants of 689 +/- 535 ms and 15.7 +/- 2.7 s. The latter component represents dissociation of drug from its binding site and the former probably represents recovery from slow inactivation. A concentration-dependent increase in the amplitude of the first component suggested that disopyramide may promote slow inactivation. There was less than 5% recovery from block during intervals equivalent to clinical diastole. Thus, depression of beats of all degrees of prematurity was similar to that of basic drive beats. Prolongation of action potential duration by therapeutic concentrations of drug following a long quiescent interval was minimal. However, profound lengthening of action potential duration occurred following washout of drug effect at a time when Vmax depression had reverted to normal, suggesting that binding of disopyramide to potassium channels may not be readily reversed. Variable effects on action potential duration may thus be attributed to a block of the window current flowing during the action potential being partially or over balanced by block of potassium channels. Purkinje fiber refractoriness was prolonged in a frequency-dependent manner. Disopyramide did not significantly alter the effective refractory period of basic beats but did increase the effective refractory period of sequential tightly coupled extra stimuli. The results can account for the antiarrhythmic actions of disopyramide during a rapid tachycardia and prevention of its initiation by programmed electrical stimulation.  相似文献   

20.
Block of Na(+) channel conductance by ranolazine displays marked atrial selectivity that is an order of magnitude higher that of other class I antiarrhythmic drugs. Here, we present a Markovian model of the Na(+) channel gating, which includes activation-inactivation coupling, aimed at elucidating the mechanisms underlying this potent atrial selectivity of ranolazine. The model incorporates experimentally observed differences between atrial and ventricular Na(+) channel gating, including a more negative position of the steady-state inactivation curve in atrial versus ventricular cells. The model assumes that ranolazine requires a hydrophilic access pathway to the channel binding site, which is modulated by both activation and inactivation gates of the channel. Kinetic rate constants were obtained using guarded receptor analysis of the use-dependent block of the fast Na(+) current (I(Na)). The model successfully reproduces all experimentally observed phenomena, including the shift of channel availability, the sensitivity of block to holding or diastolic potential, and the preferential block of slow versus fast I(Na.) Using atrial and ventricular action potential-shaped voltage pulses, the model confirms significantly greater use-dependent block of peak I(Na) in atrial versus ventricular cells. The model highlights the importance of action potential prolongation and of a steeper voltage dependence of the time constant of unbinding of ranolazine from the atrial Na(+) channel in the development of use-dependent I(Na) block. Our model predictions indicate that differences in channel gating properties as well as action potential morphology between atrial and ventricular cells contribute equally to the atrial selectivity of ranolazine. The model indicates that the steep voltage dependence of ranolazine interaction with the Na(+) channel at negative potentials underlies the mechanism of the predominant block of I(Na) in atrial cells by ranolazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号