首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of calcium on the oxidative metabolism and steroidogenic activity of human term placental mitochondria. Submicromolar Ca(2+) concentrations stimulated state 3 oxygen consumption with 2-oxoglutarate and isocitrate and activated the 2-oxoglutarate and the NAD-isocitrate dehydrogenases by diminishing their Michaelis-Menten constants. Ca(2+) inhibited NADP-isocitrate dehydrogenase (NADP-ICDH) and the synthesis of progesterone. The NADP-ICDH maximal velocity was threefold higher than that of NAD-ICDH and had a threefold lower K(m) for isocitrate than NAD-ICDH. Isocitrate but not malate or 2-oxoglutarate supported progesterone synthesis. Calcium inhibition of progesterone synthesis was observed with isocitrate but not with malate or 2-oxoglutarate. Tight regulation of NADP-isocitrate dehydrogenase by calcium ions suggests that this enzyme plays an important role in placental mitochondrial metabolism.  相似文献   

2.
The transfer of cholesterol to mitochondria, which might involve the phosphorylation of proteins, is the rate-limiting step in human placental steroidogenesis. Protein kinase A (PKA) activity and its role in progesterone synthesis by human placental mitochondria were assessed in this study. The results showed that PKA and phosphotyrosine phosphatase D1 are associated with syncytiotrophoblast mitochondrial membrane by an anchoring kinase cAMP protein-121. The 32P-labeled of four major proteins was analyzed. The specific inhibitor of PKA, H89, decreased progesterone synthesis in mitochondria while in mitochondrial steroidogenic contact sites protein-phosphorylation was diminished, suggesting that PKA plays a role in placental hormone synthesis. In isolated mitochondria, PKA activity was unaffected by the addition of cAMP suggesting a constant activity of this kinase in the syncytiotrophoblast. The presence of PKA and phosphotyrosine phosphatase D1 anchored to mitochondria by an anchoring kinase cAMP protein-121 indicated that syncytiotrophoblast mitochondria contain a full phosphorylation/dephosphorylation system.  相似文献   

3.
It has been shown that the conversion of cholesterol to progesterone by human term placental mitochondria incubated in the presence of malate or fumarate was inhibited by hydroxymalonate—an inhibitor of malic enzyme. No inhibition was observed when mitochondria were incubated in the presence of citrate or isocitrate. The degree of inhibition by hydroxymalonate of partly purified NAD(P)-linked malic enzyme activity was identical to that of both malate dependent pyruvate and progesterone formation by intact mitochondria. These data strongly support a previous suggestion that malic enzyme plays an important role in the malate dependent progesterone biosynthesis by human placental mitochondria.  相似文献   

4.
《Biochemical medicine》1980,23(3):257-262
In human term placental mitochondria the equilibrium rate of the reaction catalyzed by 20α-hydroxysteroid dehydrogenase was shown to be shifted to progesterone formation. The enzyme activity was more specific for NAD+ than NADP+. NADH strongly inhibited the progesterone biosynthesis from 20α-dihydroprogesterone. This inhibition could be reversed by the conditions with favor the NADH oxidation. Regulation of progesterone biosynthesis by the redox state of phosphopyridine nucleotides in human placental mitochondria is discussed.  相似文献   

5.
We have previously reported that cytochrome P450scc activity in the human placenta is limited by the supply of electrons to the P450scc [Tuckey, R. C., Woods, S. T. & Tajbakhsh, M. (1997) Eur. J. Biochem. 244, 835-839]. The aim of the present study was to determine whether it is adrenodoxin reductase, adrenodoxin or both which limits cytochrome P450scc activity and hence progesterone synthesis in the placenta. We found that the concentrations of adrenodoxin reductase and adrenodoxin in placental mitochondria were both considerably lower than the concentrations of these proteins in the bovine adrenal cortex. When P450scc activity assays were carried out at high mitochondrial protein concentrations, we found that the addition of exogenous adrenodoxin reductase to sonicated mitochondria rescued pregnenolone synthesis to a level above that for intact mitochondria, showing that adrenodoxin is near-saturating in vivo. In contrast, pregnenolone synthesis by sonicated mitochondria was almost zero even after the addition of human adrenodoxin. This shows that the concentration of endogenous adrenodoxin reductase was insufficient to support appreciable rates of pregnenolone synthesis, even when concentrated mitochondrial samples were used. Comparative studies with human and bovine adrenodoxin reductase have revealed that a twofold higher concentration of human adrenodoxin reductase is required for maximal P450scc activity in the presence of saturating human adrenodoxin. Thus, not only is the adrenodoxin concentration low in placental mitochondria, but the amount required for maximal P450scc activity is higher than that for the bovine reductase. Overall, the data indicate that the adrenodoxin reductase concentration limits the activity of P450scc in placental mitochondria and hence determines the rate of progesterone synthesis.  相似文献   

6.
The peripheral benzodiazepine receptor and protein kinase A have been proposed to modulate placental steroidogenesis. Binding of the radioactive benzodiazepine PK 11195 has been observed in membranes isolated from whole human placenta, but the presence of the peripheral benzodiazepine receptors, now called translocator protein, does not seem to be indispensable. We hypothesized that cAMP analogs could induce the translocator protein expression in BeWo cells increasing steroidogenesis in the presence of benzodiazepines. The effect of two benzodiazepines and of 8-Br-cAMP on steroidogenesis in BeWo cells or in isolated human placental mitochondria was studied. Benzodiazepines did not modify progesterone synthesis in either system. Progesterone increased three times in BeWo cells incubated in the presence of 8-Br-cAMP. The translocator protein was not identified by western blot in mitochondria isolated from either the human placenta or BeWo cells but it was present in isolated rat testicular mitochondria. Neither was it observed in isolated mitochondria from BeWo cells incubated with 8-Br-cAMP. An inhibitor of protein kinase A activity, H89, at 25 microM inhibited 90% the steroidogenesis in BeWo cells, even in the presence of 8-Br-cAMP, but protein phosphorylation in mitochondria increased in the presence of H89, suggesting that protein kinase A modulates the phosphorylation cycle of mitochondrial proteins. The results suggest that placental steroidogenesis is regulated via activation of protein kinase A modulated by cAMP.  相似文献   

7.
The hydrolysis of ATP, ADP or GTP was characterized in mitochondria and submitochondrial particles since a tightly-bound ATPase associated with the inner mitochondrial membrane from the human placenta has been described. Submitochondrial particles, which are basically inner membranes, were used to define the location of this enzyme. Mitochondria treated with trypsin and specific inhibitors were also used. The oxygen consumption stimulated by ATP or ADP was 100% inhibited in intact mitochondria by low concentrations of oligomycin (0.5 microgram/mg) or venturicidine (0.1 microgram/mg), while the hydrolysis of ATP or ADP was insensitive to higher concentrations of these inhibitors but it was inhibited by vanadate. Oligomycin or venturicidine showed a different inhibition pattern in intact mitochondria in relation to the hydrolysis of ATP, ADP or GTP. When submitochondrial particles were isolated from mitochondria incubated with oligomycin or venturicidine, no further inhibition of the nucleotide hydrolysis was observed, contrasting with the partial inhibition observed in the control. By incubating the placental mitochondria with trypsin, a large fraction of the hydrolysis of nucleotides was eliminated. In submitochondrial particles obtained from mitochondria treated with trypsin or trypsin plus oligomycin, the hydrolysis of ATP was 100% sensitive to oligomycin at low concentrations, resembling the oxygen consumption; however, this preparation still showed some ADP hydrolysis. Native gel electrophoresis showed two bands hydrolyzing ADP, suggesting at least two enzymes involved in the hydrolysis of nucleotides, besides the F1F0-ATPase. It is concluded that human placental mitochondria possesses ADPase and ATP-diphosphohydrolase activities (247).  相似文献   

8.
9.
The mitochondrial side-chain cleavage of cholesterol, catalysed by cytochrome P450scc, is rate-limiting in the synthesis of progesterone by the human placenta. Cytochrome P450scc activity is in turn limited by the concentration of adrenodoxin reductase (AR) in placental mitochondria. In order to better understand which components of the cholesterol side-chain cleavage system are important in the regulation of placental progesterone synthesis, we have examined their effects on P450scc activity with both saturating and limiting concentrations of AR. The present study reveals that decreasing the AR concentration causes a decrease in the K(m) of cytochrome P450scc for cholesterol, facilitating saturation of the enzyme with its substrate. Decreasing AR resulted in P450scc activity becoming less sensitive to changes in P450scc concentration. The adrenodoxin (Adx) concentration in mitochondria from term placentae is near-saturating for P450scc and under these conditions, we found that decreasing AR reduces the K(m) of P450scc for adrenodoxin. Increasing either the cholesterol or P450scc concentration increased the amount of AR required for P450scc to work at half its maximum velocity. A relatively small increase in AR can support considerably higher rates of side-chain cleavage activity when there is a coordinate increase in AR and P450scc concentrations. We conclude from this study that cholesterol is near-saturating for cytochrome P450scc activity in placental mitochondria due to the P450scc displaying a low K(m) for cholesterol resulting from the low and rate-limiting concentration of AR present. This study reveals that it is unlikely that cholesterol or adrenodoxin concentrations are important regulators of placental progesterone synthesis but AR or coordinate changes in AR and P450scc concentrations are likely to be important in its regulation.  相似文献   

10.
Incubation of human term placental mitochondria with Fe2+ and a NADPH-generating system initiated high levels of lipid peroxidation, as measured by the production of malondialdehyde. Malondialdehyde formation was accompanied by a corresponding decrease of the unsaturated fatty acid content. This NADPH-dependent lipid peroxidation was strongly inhibited by superoxide dismutase and singlet oxygen scavengers, markedly stimulated by paraquat, but was not affected by hydroxyl radical scavengers. Catalase enhanced the production of malondialdehyde by placental mitochondria. The effects of catalase and hydroxyl radical scavengers suggest that the initiation of NADPH-dependent lipid peroxidation is not dependent upon the hydroxyl radical produced via an iron-catalyzed Fenton reaction. These studies provide evidence that hydrogen peroxide strongly inhibits NADPH-dependent mitochondrial lipid peroxidation. The inhibitory effect of superoxide dismutase and stimulatory effect of paraquat, which was abolished by the addition of superoxide dismutase, suggests that superoxide may promote NADPH-dependent lipid peroxidation in human placental mitochondria.  相似文献   

11.
The modification of both beta-Tyr-368 and beta-His-427 can be correlated with the loss of activity observed when the bovine mitochondrial F1-ATPase is inactivated with 5'-p-fluorosulfonylbenzoyl[3H]adenosine ([3H]FSBA). At pH 8.0, where the rate of inactivation is fast, beta-Tyr-368 is modified predominantly, while at pH 6.0, where the rate of inactivation is slow, beta-His-427 is modified predominantly. At pH 7.0, the 2 residues are modified with about equal efficiency. When the F1-ATPase was inactivated by 80% at pH 6.5, 7.0, and 7.5, the sum of radioactivity incorporated into beta-Tyr-368 and beta-His-427 was 1.99, 1.87, and 1.82 mol of label incorporated per mol of enzyme, respectively. Examination of the rate of inactivation of the enzyme by FSBA as a function of pH revealed two pKa values, one of about 7.6 associated with the modification of beta-Tyr-368 and the other of about 5.8 associated with the modification of beta-His-427. The inactivation of the F1-ATPase by FSBA exhibited an initial fast rate followed by a slower rate in triethanolamine-HCl, pH 7.0. In contrast, only a single rate, equivalent to the fast phase of inactivation in the absence of phosphate, was observed in 0.2 M phosphate, pH 7.0. The dependence of this stimulation on phosphate concentration is sigmoidal with half-maximal stimulation occurring at approximately 160 mM. The ratio of 3H incorporated into beta-Tyr-368 to that incorporated into beta-His-427 was approximately the same during the fast and slow phases of inactivation in triethanolamine-HCl, pH 7.0. Approximately the same ratio was observed when the enzyme was modified during the single phase of inactivation exhibited in the presence of 0.2 M phosphate, pH 7.0. The sum of the 3H incorporated into beta-Tyr-368 and beta-His-427 during inactivation of the F1-ATPase from bovine heart mitochondria by [3H]FSBA in the presence and absence of phosphate was linear and extrapolated to a value of about 2.6 residues modified on complete inactivation of the enzyme. From these data, it is concluded that FSBA binds to a single binding site on the beta subunits of the enzyme where it reacts with either beta-Tyr-368 or beta-His-427 in mutually exclusive reactions. All three beta subunits must be modified in this manner for complete inactivation to be observed.  相似文献   

12.
The effects of chlorpromazine on various properties of the F1-ATPases from bovine heart mitochondria (MF1), the plasma membranes of Escherichia coli (EF1), and plasma membranes of the thermophilic bacterium PS3 (TF1) have been examined. While chlorpromazine inhibited MF1 with an I0.5 of about 50 microM and EF1 with an I0.5 of about 150 microM at 23 degrees C, the ATPase activity of TF1 was stimulated by chlorpromazine concentrations up to 0.6 mM at this temperature. Maximal activation of about 20% was observed at 0.2 mM chlorpromazine at 23 degrees C. Chlorpromazine concentrations greater than 0.6 mM inhibited TF1 at 23 degrees C. At 37 degrees C the ATPase activity of TF1 was doubled in the presence of 0.5 mM chlorpromazine, the concentration at which maximal stimulation was observed at this temperature. Chlorpromazine inhibited the rate of inactivation of EF1 by dicyclohexylcarbodiimide (DCCD) at 23 degrees C and pH 6.5. Concentrations of chlorpromazine which inhibited the ATPase activity of TF1 at pH 7.0 accelerated the rate of inactivation of the enzyme by DCCD at pH 6.5, while lower concentrations of the phenothiazine, which stimulated the ATPase, had no effect on DCCD inactivation. Chlorpromazine concentrations up to 1.0 mM had no effect on the rate of inactivation of TF1 by DCCD at 37 degrees C and pH 6.5. Chlorpromazine at 0.5 mM accelerated the rate of inactivation of MF1 by 5'-p-fluorosulfonylbenzoyladenosine (FSBA), while it slowed the rate of inactivation of EF1 by FSBA. The inactivation of TF1 by FSBA in the absence of chlorpromazine was complex and was not included in this comparison. Chlorpromazine protected MF1 and EF1 against cold inactivation. Whereas 100 microM chlorpromazine afforded about 90% stabilization of MF1 at 4 degrees C, only about 30% stabilization of EF1 was observed under the same conditions in the presence of 400 microM chlorpromazine. Each of the ATPases was inactivated by the structural analog of chlorpromazine, quinacrine mustard. Whereas 5 mM ATP and 5 mM ADP protected MF1 and TF1 against inactivation by 0.5 mM quinacrine mustard, the rate of inactivation of EF1 by quinacrine mustard was accelerated fourfold by 5 mM ATP and slightly accelerated by 5 mM ADP.  相似文献   

13.
L R Chaudhary  D M Stocco 《Biochimie》1988,70(10):1353-1360
The tumor-promoting phorbol ester, phorbol-12-myristate-13-acetate (PMA) markedly stimulated progesterone production in MA-10 Leydig tumor cells. A slight but significant increase (35%) in the activity of the cholesterol side-chain cleavage (CSCC) enzyme was observed in mitochondria isolated from the PMA-treated MA-10 Leydig cells when compared to mitochondria isolated from non-treated cells. However, this stimulation of CSCC activity appears to be of limited importance when compared to the 240-fold increase observed in progesterone production following PMA stimulation. In contrast, the inactive phorbol ester 4 alpha-phorbol-12,13-didecanoate (alpha-PD) had no effect on either progesterone production or CSCC activity. PMA had no effect on the conversion of 25-hydroxycholesterol and 22R-hydroxycholesterol into progesterone suggesting that one of the mechanism(s) of PMA action may involve the delivery of cholesterol to the mitochondria and/or the affinity of cholesterol with cytochrome P-450scc. Stimulation of steroidogenesis by PMA was also shown to be inhibited by cycloheximide. When PMA was added together with a submaximal dose of hCG, hCG-stimulated steroidogenesis was inhibited. However, at a maximal dose of human chorionic gonadotropin (hCG), PMA inhibited steroid synthesis at 1 and 2 h but had no significant effect at 3 h. Conversely, PMA had an additive effect on cAMP induced steroidogenesis. It was further demonstrated that PMA resulted in a decrease in the hCG-induced accumulation of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The relationship between malate dependent conversion of cholesterol to progesterone and citrate biosynthesis in human term placental mitochondria has been investigated. It has been shown that ADP and ATP (but not AMP) stimulate, significantly, both progesterone and citrate formation. The stimulatory effect of these adenine nucleotides was dependent on the presence of Mn2+ in the incubation medium. When Mn2+ was omitted or replaced by Mg2+ only negligible stimulatory effect of ADP and ATP was observed. Atractyloside and oligomycin were without effect on ADP and ATP stimulated progesterone and citrate production. Other dinucleotides tested as: GDP, UDP and CDP stimulated both progesterone and citrate formation only slightly. In all the experiments presented the rate of progesterone biosynthesis was found to be significantly correlated with the rate of citrate production. The experimental results presented in this paper suggest that the stimulatory effect of ADP and ATP on malate dependent progesterone biosynthesis is a consequence of an increased conversion of malate to tricarboxylic Krebs cycle intermediates. The possible mechanism by which ATP and ADP stimulate the citrate formation in human placental mitochondria is discussed.  相似文献   

15.
Mechanisms of p34cdc2 regulation.   总被引:14,自引:6,他引:8       下载免费PDF全文
The kinase activity of human p34cdc2 is negatively regulated by phosphorylation at Thr-14 and Tyr-15. These residues lie within the putative nucleotide binding domain of p34cdc2. It has been proposed that phosphorylation within this motif ablates the binding of ATP to the active site of p34cdc2, thereby inhibiting p34cdc2 kinase activity (K. Gould and P. Nurse, Nature [London] 342:39-44, 1989). To understand the mechanism of this inactivation, various forms of p34cdc2 were tested for the ability to bind nucleotide. The active site of p34cdc2 was specifically modified by the MgATP analog 5'-p-fluorosulfonylbenzoyladenosine (FSBA). The apparent Km for modification of wild-type, monomeric p34cdc2 was 148 microM FSBA and was not significantly affected by association with cyclin B. Tyrosine-phosphorylated p34cdc2 was modified by FSBA with a slightly higher Km (241 microM FSBA). FSBA modification of both tyrosine-phosphorylated and unphosphorylated p34cdc2 was competitively inhibited by ATP, and half-maximal inhibition in each case occurred at approximately 250 microM ATP. In addition to being negatively regulated by phosphorylation, the kinase activity of p34cdc2 was positively regulated by the cyclin-dependent phosphorylation of Thr-161. Mutation of p34cdc2 at Thr-161 resulted in the formation of an enzymatically inactive p34cdc2/cyclin B complex both in vivo and in vitro. However, mutation of Thr-161 did not significantly affect the ability of p34cdc2 to bind nucleotide (FSBA). Taken together, these results indicate that inhibition of p34cdc2 kinase activity by phosphorylation of Tyr-15 (within the putative ATP binding domain) or by mutation of Thr-161 involves a mechanism other than inhibition of nucleotide binding. We propose instead that the defect resides at the level of catalysis.  相似文献   

16.

Background

STARD1 transports cholesterol into mitochondria of acutely regulated steroidogenic tissue. It has been suggested that STARD3 transports cholesterol in the human placenta, which does not express STARD1. STARD1 is proteolytically activated into a 30-kDa protein. However, the role of proteases in STARD3 modification in the human placenta has not been studied.

Methods

Progesterone determination and Western blot using anti-STARD3 antibodies showed that mitochondrial proteases cleave STARD3 into a 28-kDa fragment that stimulates progesterone synthesis in isolated syncytiotrophoblast mitochondria. Protease inhibitors decrease STARD3 transformation and steroidogenesis.

Results

STARD3 remained tightly bound to isolated syncytiotrophoblast mitochondria. Simultaneous to the increase in progesterone synthesis, STARD3 was proteolytically processed into four proteins, of which a 28-kDa protein was the most abundant. This protein stimulated mitochondrial progesterone production similarly to truncated-STARD3. Maximum levels of protease activity were observed at pH 7.5 and were sensitive to 1,10-phenanthroline, which inhibited steroidogenesis and STARD3 proteolytic cleavage. Addition of 22(R)-hydroxycholesterol increased progesterone synthesis, even in the presence of 1,10-phenanthroline, suggesting that proteolytic products might be involved in mitochondrial cholesterol transport.

Conclusion

Metalloproteases from human placental mitochondria are involved in steroidogenesis through the proteolytic activation of STARD3. 1,10-Phenanthroline inhibits STARD3 proteolytic cleavage. The 28-kDa protein and the amino terminal truncated-STARD3 stimulate steroidogenesis in a comparable rate, suggesting that both proteins share similar properties, probably the START domain that is involved in cholesterol binding.

General significance

Mitochondrial proteases are involved in syncytiotrophoblast-cell steroidogenesis regulation. Understanding STARD3 activation and its role in progesterone synthesis is crucial to getting insight into its action mechanism in healthy and diseased syncytiotrophoblast cells.  相似文献   

17.
The ATP-dependent inactivation of the pyruvate dehydrogenase complex (PDC) was examined using ruptured mitochondria and partially purified pyruvate dehydrogenase complex isolated from broccoli and cauliflower (Brassica oleracea) bud mitochondria. The ATP-dependent inactivation was temperature- and pH-dependent. [(32)P]ATP experiments show a specific transphosphorylation of the gamma-PO(4) of ATP to the complex. The phosphate attached to the PDC was labile under mild alkaline but not under mild acidic conditions. The inactivated-phosphorylated PDC was not reactivated by 20 mm MgCl(2), dialysis, Sephadex G-25 treatment, apyrase action, or potato acid phosphatase action. However, partially purified bovine heart PDC phosphatase catalyzed the reactivation and dephosphorylation of the isolated plant PDC. The ATP-dependent inactivation-phosphorylation of the PDC was inhibited by pyruvate. It is concluded that the ATP-dependent inactivation-phosphorylation of broccoli and cauliflower mitochondrial PDC is catalyzed by a PDC kinase. It is further concluded that the PDC from broccoli and cauliflower mitochondria is capable of interconversion between an active (dephosphorylated) and an inactive (phosphorylated) form.  相似文献   

18.
P J Kennelly  J Leng  P Marchand 《Biochemistry》1992,31(23):5394-5399
An ATP-like affinity labeling reagent, 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA), was used to probe the MgATP-binding site of smooth muscle myosin light chain kinase from chicken gizzard (smMLCK) and its calmodulin (CaM) complex. Native smMLCK has an absolute requirement for the binding of the calcium complex of CaM for expression of its catalytic activity. FSBA reacted with smMLCK-CaM and with the CaM-free, inactive enzyme as well. Both reactions were dependent on time and FSBA concentration. Reaction was accompanied by the incorporation of covalently bound [14C]FSBA into smMLCK protein at a molar ratio of approximately 1:1 in each case. p-(Fluorosulfonyl)benzoic acid, an analogue of FSBA lacking the adenosine targeting group, did not react at a significant rate with either form of smMLCK. Reaction of CaM-free and CaM-bound smMLCK with FSBA displayed saturation kinetics. The first-order rate constants for the conversion of the reversible, noncovalent enzyme-FSBA complex to form the irreversibly inhibited, covalently modified enzyme were similar for both smMLCK and smMLCK-CaM, 0.15 and 0.07 min-1, respectively. The concentrations of FSBA yielding the half-maximal rate of inactivation, KI, were essentially identical--0.65 and 0.64 mM, respectively--for smMLCK and smMLCK-CaM. MgATP, but not MgGTP or a substrate peptide, potently inhibited reaction with FSBA. Inhibition by MgATP was competitive. The measured inhibitory constant for MgATP was essentially the same--33 versus 34 microM--for both smMLCK and smMLCK-CaM. It therefore is concluded that the MgATP-binding site on smMLCK remains accessible and recognizable as such when the enzyme becomes inactivated upon dissociation of CaM.  相似文献   

19.
Sucrose‐phosphate synthase (SPS) activity measured under limiting substrate and in the presence of inorganic phosphate as an allosteric inhibitor (Vlim activity) from the leaves of Prosopis juliflora was earlier observed to respond rapidly and reversibly to light/dark transitions ( Sinha et al. 1997b,c ). The experiments therefore, were conducted to study the potential regulation of the enzyme by a mechanism of phosphorylation/dephosphorylation. The desalted extract of the enzyme prepared from irradiated leaves showed a time‐dependent spontaneous inactivation of the Vlim activity when the extract was preincubated and an additional inactivation when incubated with ATP. The spontaneous inactivation is not inhibited by phosphatase inhibitors but the ATP‐dependent inactivation was abolished when either 5′‐p‐fluorosulphonylbenzoadenosine (FSBA) or glucose‐6‐phosphate (G6P), (both reported as inhibitors for the SPS‐protein kinase from spinach) was included during preincubation. FSBA also prevented the dark inactivation of SPS in the leaves of P. juliflora when fed through the transpiration stream. The activity of SPS measured under the Vmax condition remained relatively unaffected by ATP or FSBA. The desalted extract prepared from darkened leaves on the other hand, when preincubated at 25°C showed a time‐dependent increase in the Vlim activity and the activation state of the enzyme. The spontaneous activation observed during preincubation appears to be due to the dephosphorylation of the enzyme and is strongly inhibited by okadaic acid, a potent protein phosphatase inhibitor. Alternately, feeding okadaic acid to excised leaves in the dark also blocked the subsequent light activation of Vlim activity. These results are consistent with the assumption that the light/dark regulation of Vlim activity observed in the leaves of P. juliflora was mediated through a dephosphorylation/phosphorylation mechanism.  相似文献   

20.
The ATP-binding site of purified bovine brain phosphatidylinositol 4-kinase 230 (PI4K230) was studied by its reaction with 5'-p-fluorosulfonylbenzoyladenosine (FSBA), an ATP-like alkylating reagent. Four hundred to eight hundred micromolar FSBA inactivated PI4K230 specifically with apparently first-order kinetics and resulted in 50% loss of enzyme activity in 36--130 min. The specificity of the reaction with FSBA was demonstrated by the lack of inactivation with 5'-p-fluorosulfonylbenzoyl chloride and by protection with ATP and ATP analogues against inactivation. Most ATP analogues competed with FSBA inactivation in order of their increasing hydrophobicity, parallel to their inhibitory potency in activity measurements. The specific binding of FSBA to PI4K230 was demonstrated also by Western-blot experiments. These results suggest that FSBA-reactive group(s) involved in the enzyme activity are located near to the ATP-binding site in a hydrophobic region of native PI4K230. Experiments with site-directed mutagenesis indicate that the conserved Lys-1792 plays essential role in the enzyme activity and serves as one target of affinity labelling by FSBA. Prevention of both Lys-1792-directed and Lys-1792-independent binding of FSBA by Cibacron Blue 3GA suggest that these sites are located spatially close to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号