首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of a dominant species, Gerbillus pyramidum (Egyptian sand gerbil), on the patch use of its subordinate competitor, G. andersoni allenbyi (Allenby's gerbil), to better understand interspecific competition between the two species. We used manipulated resource patches (seed trays) covered with cages with two adjustable species-specific gates (either opened or closed to the bigger-dominant species, but always opened to the subordinate one). We recorded species tracks around and on the seed trays and giving-up densities (GUDs) of seeds in the trays after each night of foraging. G. a. allenbyi depleted seed patches to a lower level whenever G. pyramidum was given the opportunity to forage on the seed trays (i.e., present on the grid). This result held regardless of whether G. pyramidum was actually present at a particular station. We suggest that competition from G. pyramidum occurs both directly by interference, in which G. a. allenbyi is forced to be active in the late part of the night, and indirectly by exploitation via resource depletion by G. pyramidum in the early part of the night. The results suggest that interspecific competition from G. pyramidum reduces seed availability and the richness of the environment for G. a. allenbyi enough to affect the marginal value of energy for G. a. allenbyi individuals and cause them to experience lower costs of predation and manifest lower GUDs.  相似文献   

2.
Ovadia O  Abramsky Z  Kotler BP  Pinshow B 《Oecologia》2005,142(3):480-488
We examined gender-dependent competitive interactions between two nocturnal desert gerbil species, Gerbillus andersoni allenbyi and G. pyramidum, by a field manipulation experiment. The study was done in two 1-ha enclosed plots and included allopatric (only G. a. allenbyi) and sympatric (both species together) treatments. Seed trays and thermal imaging cameras were used to observe the gerbils foraging activities and aggressive interactions. We found that the negative effect of the competitively dominant species, G. pyramidum, on time spent in seed trays, and ability to control these artificial food patches, was stronger on male than on female G. a. allenbyi. Consequently, the aggression of male G. a. allenbyi towards female G. a. allenbyi was markedly reduced, indicating that the dominant species mediated competition between the genders of the subordinate species. Furthermore, this interference-mediated indirect effect was associated with a decrease in the body mass of male G. a. allenbyi and an increase in the survival of female G. a. allenbyi. We suggest that both the reduction in intra-specific aggression and the positive effect on female survival can potentially stabilize competitive interactions and promote coexistence in this small mammal community.  相似文献   

3.
We observed patch-use behavior by two gerbil species in a fieldsetting and investigated how aggression and intrinsic decision-makinginteract to influence patch residence times. Results were interpretedby using a competing risk analysis model, which uniquely enabledus to estimate the intrinsic patch-leaving decisions independentlyof external interruptions of foraging bouts by aggression. Theexperiment was conducted in two 1-ha field enclosures completelysurrounded by rodent-proof fences and included allopatric (onlyGerbillus andersoni allenbyi) and sympatric (G. a. allenbyiand G. pyramidum) treatments. We predicted that increased foodpatch quality (i.e., habitat quality) should decrease intrinsicpatch-leaving rates and increase rates of aggressive interactionsinvolving the forager feeding in the patch (i.e., the occupantindividual). We also anticipated that increasing populationdensity should result in an increase in the rate of aggressiveinteractions involving the occupant individual. Our resultssupported the first two predictions, indicating a trade-offbetween foraging and aggression. However, the third predictionwas realized only for G. a. allenbyi in allopatry. Furthermore,in allopatry, occupant G. a. allenbyi individuals with highcompetitive ranks were involved in aggressive interactions atlower rates than those with low competitive ranks. However,in sympatry, patch-use behavior of occupant G. a. allenbyi individualswas mainly influenced by aggressive behavior of G. pyramidum,which did not respond to their competitive rank. Thus, it shouldpay less for G. a. allenbyi to be aggressive in sympatric populations.The observed reduction in intraspecific aggression among individualG. a. allenbyi in the presence of G. pyramidum supports thisassertion. We suggest that this reduction likely weakens thenegative effect of intra- and interspecific density on the percapita growth rate of G. a. allenbyi. Because this would changethe slope of the isocline of G. a. allenbyi, it could be animportant mechanism promoting coexistence when habitat selectionis constrained.  相似文献   

4.
Measuring the benefit of habitat selection   总被引:1,自引:0,他引:1  
We used a behavioral bioassay to estimate the advantages thattwo species of gerbils (Gerbillus allenbyi and G. pyramidum)experienced by preferring a semistabilized dune habitat overa stabilized sand habitat. We used the magnitude of foragingeffort by the gerbils to signal the difference between thetwo habitats. When they were foraging as much in stabilizedsand as in semistabilized dune, we inferred that these habitatswere providing equivalent rewards. We performed a series ofexperiments in two 1-ha field enclosures, each containing similarproportions of stabilized sand and semistabilized dune. Eachenclosure contained a population of only one of the species.By varying the amount of seeds added (either 0.5, 1, 2, or 3g of seeds in 18 seed trays) to each habitat and monitoringthe behavior of the gerbils, we were able to fit a curve thatreflected the change in habitat preference as a function ofseed addition rate. We were also able to show how much seedaddition had to be added to bring the two habitats into equaluse. Each species required only 13 g/ha/night to entirely offsetthe advantage of the semistabilized dune.  相似文献   

5.
Summary Two primarily granivorous rodents of Old World deserts,Gerbillus allenbyi (mean adult body mass=26 g) andG. pyramidum (mean adult body mass=40 g), coexist in sandy habitats in the northwestern Negev desert. Both species are burrow dwellers and are nocturnal; however, in their overall distributions,G. pyramidum occurs in more extreme deserts than doesG. allenbyi. In comparing field metabolic rate (FMR) and water influx of the twoGerbillus species, we considered two alternative hypotheses: (1) given the difference in their overall distributions,G. pyramidum has a lower FMR and water influx thanG. allenbyi, and (2) given the similarity in their diets, and that we worked with sympatric populations, FMR and water influx are similar. The latter alternative proved to be correct. Field metabolic rates in summer were 7.29 kJ · g-0.51 · day-1 forG. allenbyi and 7.74 kJ · g-0.51 · day-1 forG. pyramidum, values that were 69.3% and 74.5%, respectively, of those predicted for rodents of their body masses. Summer water influx ofG. allenbyi was 0.167 ml · g-0.90 · day-1 and that ofG. pyramidum was 0.144 ml · g-0.90 · day-1; these values were 79.4% and 68.6%, respectively, of water influxes predicted for rodents of their body masses. When compared allometrically, there were no interspecific differences in any of the measurements.  相似文献   

6.
Predation plays an important role in ecological communities by affecting prey behavior such as foraging and by physical removal of individual prey. In regard to foraging, animals such as desert rodents often balance conflicting demands for food and safety. This has been studied in the field by indirectly manipulating predatory risk through the alteration of cues associated with increased risk such as cover or illumination. It has also been studied by directly manipulating the presence of predators in aviaries. Here, we report on experiments in which we directly manipulated actual predatory risk to desert rodents in the field. We conducted a series of experiments in the field using a trained barn owl (Tyto alba) to investigate how two species of coexisting gerbils (Gerbillus allenbyi and G. pyramidum) respond to various cues of predatory risk in their natural environment. The gerbils responded to risk of predation, in the form of owl flights and owl hunger calls, by reducing their activity in the risky plot relative to the control plot. The strongest response was to owl flights and the weakest to recorded hunger calls of owls. Furthermore, when risk of predation was relatively high, as in the case with barn owl flights, both gerbil species mostly limited their activity to the safer bush microhabitat. The response of the gerbils to risk of predation disappeared very quickly following removal of the treatment, and the gerbils returned to normal levels of activity within the same night. The gerbils did not respond to experimental cues (alarm clock), the presence of the investigators, the presence of a quiet owl, and recorded white noise. Using trained barn owls, we were able to effectively manipulate actual risk of predation to gerbils in natural habitats and to quantify how gerbils alter their behavior in order to balance conflicting demands of food and safety. The method allows assessment of aspects of behavior, population interactions, and community characteristics involving predation in natural habitats.  相似文献   

7.
We used foraging trays to determine whether oldfield mice, Peromyscuspolionotus, altered foraging in response to direct cues of predationrisk (urine of native and nonnative predators) and indirectcues of predation risk (foraging microhabitat, precipitation,and moon illumination). The proportion of seeds remaining ineach tray (a measure of the giving-up density [GUD]) was usedto measure risk perceived by mice. Mice did not alter theirGUD when presented with cues of native predators (bobcats, Lynxrufus, and red foxes, Vulpes vulpes), recently introduced predators(coyotes, Canis latrans), nonnative predators (ocelots, Leoparduspardalis), a native herbivore (white-tailed deer, Odocoileusvirginianus), or a water control. Rather, GUD was related tomicrohabitat: rodents removed more seeds from foraging trayssheltered beneath vegetative cover compared with exposed traysoutside of cover. Rodents also removed more seeds during nightswith precipitation and when moon illumination was low. Our resultssuggest that P. polionotus used indirect cues rather than directcues to assess risk of vertebrate predation. Indirect cues maybe more reliable than are direct scent cues for estimating riskfrom multiple vertebrate predators that present the most riskin open environments.  相似文献   

8.
The foraging behavior of a predator species is thought to bethe cause of short-term apparent competition among those preyspecies that share the predator. Short-term apparent competitionis the negative indirect effect that one prey species has onanother prey species via its effects on predator foraging behavior.In theory, the density-dependent foraging behavior of granivorousrodents and their preference for certain seeds are capable of inducing short-term apparent competition among seed species.In this study, I examined the foraging behavior of two heteromyidrodent species (family Heteromyidae), Merriam's kangaroo rats(Dipodomys merriami) and little pocket mice (Perognathus longimembris).In one experiment I tested the preferences of both rodent speciesfor the seeds of eight plant species. Both rodent species exhibiteddistinct but variable preferences for some seeds and avoidanceof others. However, the differences in preference appearedto have only an occasional effect on the strength of the short-term apparent competition detected in a field experiment. In anotherexperiment, I found that captive individuals of both rodentspecies had approximately equal foraging effort (i.e., timespent foraging) in patches that contained a highly preferredseed type (Oryzopsis hymenoides) regardless of seed density and the presence of a less preferred seed type (Astragalus cicer)in the patches. The rodents also harvested a large proportionof O. hymenoides seeds regardless of initial seed density;this precluded a negative indirect effect of A. cicer on O.hymenoides. But there was a negative indirect effect of O.hymenoides on A. cicer caused by rodents having a lower foragingeffort in patches that only contained A. cicer seeds than inpatches that contained A. cicer and O. hymenoides seeds. Theindirect interaction between O. hymenoides and A. cicer thusrepresented a case of short-term apparent competition thatwas non-reciprocal. Most importantly, it was caused by theforaging behavior of the rodents.  相似文献   

9.
We examined the effects of seed size on patch use and diet selection for three co-existing Negev Desert granivores: Allenby's gerbil ( Gerbillus allenbyi ), greater Egyptian sand gerbil ( Gerbillus pyramidum ), and crested lark ( Galerida cristata ). We manipulated size and spatial distribution of seeds in experimental food patches and quantified foraging behavior by measuring giving-up densities (GUDs: the amount of food remaining in a resource patch following exploitation by a forager). In one experiment, we presented small (<1.4 mm in diameter cracked wheat), medium (2.0–3.3 mm), and large (>3.4 mm) seeds in separate trays; in a second, we presented small and medium seeds separately and mixed together. Gerbils had a higher handling time efficiency on smaller seeds, but a much higher encounter probability on larger seeds (20 times higher on large than medium seeds, and 2–5 times higher on medium than small seeds). This led gerbils to have significantly lower GUDs on larger seeds than smaller seeds and to harvest a higher proportion of the larger seeds. When presented with rich and poor patches, G. allenbyi tended to equalize GUDs in both patches, indicating a quitting harvest rate rule for patch exploitation. In contrast, larks appeared to use a fixed time rule for patch exploitation. For larks, seed size did not influence encounter probabilities, and they showed no seed-size selectivity. Still, larks had higher handling efficiencies on smaller than larger seeds, and consequently had a significantly lower GUD on small than medium seeds. Despite large differences between the gerbils and larks in their foraging, our results do not support species coexistence via seed-size partitioning: the larks had much higher GUDs than the gerbils on all seed sizes. Nonetheless, seed size, seed abundance, seed distribution and the animal's patch use behavior all played major roles in determining gerbils' and larks' diet selectivities and GUDs.  相似文献   

10.
The invasive erect prickly pear cactus (Opuntia stricta) has reduced rangeland quality and altered plant communities throughout much of the globe. In central Kenya's Laikipia County, olive baboons (Papio anubis) frequently consume O. stricta fruits and subsequently disperse the seeds via defecation. Animal‐mediated seed dispersal can increase germination and subsequent survival of plants. However, consumption of seeds (seed predation) by rodents may offset the potential benefits of seed dispersal for cactus establishment by reducing the number of viable seeds. We investigated foraging preferences of a common and widely distributed small mammal—the fringe‐tailed gerbil (Gerbilliscus robustus), between O. stricta seeds deposited in baboon faeces versus control O. stricta seeds. In addition to providing evidence of seed predation on O. stricta by G. robustus, our data show that seed removal was higher (shorter time to use) for seeds within faeces than for control seeds. G. robustus clearly prefers seeds within faeces compared to control seeds. These results suggest that high abundances of rodents may limit successful establishment of O. stricta seeds, possibly disrupting seed dispersal via endozoochory by baboons.  相似文献   

11.
Spatial and temporal heterogeneity is a major factor structuring communities and contributing to coexistence of the species they contain. In this study we examine a critical aspect of environmental heterogeneity that is assumed to promote coexistence in two gerbil species of the Western Negev Desert. Previous studies assumed that temporal partitioning, in activity time, is the result of daily redistribution of seeds that the dominant species is the first to utilize while the sub-ordinate and efficient species is being pushed to use the later and poorer part of the night. We tested the assumption that daily afternoon winds generating spatial and temporal heterogeneity in seed availability by the redistribution of sand and seeds. This was done by comparing plots experiencing normal wind condition with manipulated plots where wind action was diminished by a shade-cloth fence. Our results show that considerable amount of sand and seeds are redistributing regularly on a time scale of a single day. Our results also show that gerbil foraging behavior is strongly related to the pattern of the redistribution dynamics of the seeds. When we prevented redistribution of seeds, gerbil foraging activity was reduced considerably. However, both seed redistribution and gerbil activity did not change much on control plots. Furthermore, the two gerbil species responded differently to the reduction in seed redistribution. The larger Gerbillus pyramidum was shown to be more sensitive to the reduction than the smaller G. a. allenbyi . Daily variability in the availability of seed resources is probably the niche axis which, together with the trade-off in foraging efficiency of the species, forms the mechanism for the coexistence of the two gerbil species in the semi-stabilized sands.  相似文献   

12.
The prediction of pest regulation by multi-predator communities often remains challenging because of variable and opposite effects of niche complementarity and predator interference. Carabid communities are regulating weeds in arable fields and include a mix of species ranging from granivores to predators that are obligate omnivores. It is not clear from field studies whether granivore and obligate omnivore species either contribute equally or are complementary in the process of weed suppression, and little is known about the impact of potential predator interference within carabid communities on weed suppression. We compared the weed seed foraging strategy of the granivore Harpalus affinis and the obligate omnivore Poecilus cupreus. Using no-choice test experiments, we compared their activity and seed acceptance for four weed species through a scoring of the proportion of tested individuals consuming weeds, their latency before the consumption of the first seed and the total number of seeds consumed. We then evaluated their seed acceptance for dandelion seed Taraxacum officinale under predator interference by using chemical cues of carabids and tested the impact of three treatments, namely cues of intraspecific competition, interspecific competition and intraguild predation. We found that the obligate omnivore P. cupreus was highly active, had a low latency before consuming its first seed but had an interest in only two of the four weed species. P. cupreus seed acceptance remained unchanged in the presence of predator cues. By contrast, H. affinis was slow to start its seed consumption, accepted equally seeds of the four weed species and significantly increased its seed consumption in the presence of cues mimicking intraguild predation. These findings indicate that the two species differ in their foraging strategies, and as such, could have different contributions to weed seed suppression. This novel result calls for further studies documenting the foraging strategy of carabid species that thrive in arable fields as this could significantly improve our understanding of the delivery of weed seed regulation.  相似文献   

13.
Post‐dispersal seed predation is a key process determining the variability in seed survival in forests, where most seeds are handled by rodents. Seed predation is thought to affect seedling regeneration, colonization ability and spatial distribution of plants. Basic seed traits are the essential factors affecting rodent foraging preferences and thus seed survival and seedling recruitment. Many studies have discussed several seed traits and their effects upon seed predation by rodents. However, the results of those previous studies are usually equivocal, likely because few seed traits and/or plant species tend to be incorporated into these studies. In order to elucidate the relationships between seed predation and seed traits, we surveyed the predation of 48 600 seeds in a natural pine forest, belonging to 30 species, for three consecutive years. The results demonstrated that: (i) seed size and seed coat hardness did not significantly affect seed predation; (ii) total phenolics had a negative effect upon seed predation; (iii) positive effects of nitrogen content upon seed predation were found. From our study, it seems that the better strategy to prevent heavy predation is for plants to produce seeds with higher total phenolics content rather than physical defenses (i.e. hard seed coat) or larger seeds. Additionally, rodent foraging preference may depend more on Nitrogen content than other nutrient content of seeds.  相似文献   

14.
Seed Coat Dormancy in Two Species of Grevillea(Proteaceae)   总被引:3,自引:0,他引:3  
The role played by the seed coat in seed dormancy of Grevillealinearifolia(Cav.) Druce and G. wilsonii(A. Cunn.) was testedby a series of manipulations in which the seed coat was dissectedand removed, dissected and returned to the decoated seed, ordissected, removed and given a heat shock, and returned to thedecoated seed. Germination of intact seeds of both species wasalso examined after exposure to heat shock, smoke, or heat shockand smoke combined. Water permeability of the seed coat wasinvestigated by examining imbibition. For intact seeds, virtuallyno germination occurred under any treatment (G. wilsonii), orgermination was increased by exposure to either heat or smoke(G. linearifolia). Removal of the seed coat led to germinationof all decoated seeds for G. linearifolia, or a proportion ofdecoated seeds for G. wilsonii. Inclusion of smoked water inthe incubation medium led to a higher proportion of decoatedseeds germinating for G. wilsonii. Returning the seed coat,either with or without heat shock to the seed coat, did notsignificantly affect germination in either species. Seed coatswere permeable to water in both species. For the two Grevilleaspecies, there were different dormancy mechanisms that werecontrolled by the seed coat (G. linearifolia) or by both theseed coat and embryo (G. wilsonii). Copyright 2000 Annals ofBotany Company Grevillea linearifolia, Grevillea wilsonii, dormancy, seed coat dormancy, seed coat permeability, smoke, heat shock, germination  相似文献   

15.
Initial work examining crab foraging from optimality premisesexplored fundamental foraging scope (the capacity of animalsto graze), often within an abstract experimental context. Anemergent theme involves explicit consideration of biologicalconstraints (e.g., predation risk) and environmental factors(e.g., substrate type) which, by modulating grazing capacity,determine the realized foraging pattern seen in nature. We briefly review two studies that illustrate the contemporaryfocus on realized foraging pattern. One defines field grow-outtechniques for bivalves (raised in mariculture and resourceenhancement programs) that minimize losses from predators suchas the portunid crab, Ovalipes ocellatus. By focusing on marginalregions of predator: prey interaction (in this case, foragingon low densities of clams planted in heterogenous substrates),the study yielded novel insight into limits on portunid crabforaging on infaunal clams. The second study analyses the foragingperformance of a deposit feeding ocypodid crab, Scopimera inflata,over different temporal and spatial scales. We demonstrate thatwhereas S. inflata performs sub-optimally at micro-scales (secondsto minutes; mm to cm), the crabs nearly optimize performanceover macro-scales (days to years; cm to m). Continued research on the fundamental foraging scope of crabsis warranted, but should be explicitly referenced to naturalhistorical context and, in particular, to the forager's ontogeneticstage. We also perceive a need for collaborative research incorporatingbehavioral, physiological, and biochemical facets in an integratedexperimental setting. This would ensure that context does notbias information, as can occur in studies that emphasise a particularresearch perspective, methodological approach, or scale at whichforaging is analysed.  相似文献   

16.
Woody plant invasion in grassland ecosystems is a worldwide phenomenon, and biotic interactions as competition and predation have been invoked as a possible barrier to woody encroachment in many ecosystems. We evaluated the role of rodents as seed predators in Pampean grasslands, and we assessed the differences in removal by rodents between one native species, Prosopis caldenia (Caldén) and one exotic species, Gleditisia triacanthos (Honey locust). The experiment was conducted at different phases of the rodent population cycle in two grassland communities, a remnant of a native grassland and a post agriculture grassland (old field). The amount of seed loss caused by predation was estimated by a bait-removal experiment in foraging stations. We estimated the frequency of foraging stations with consumption, the overall amount of seed predation and the individual rate of seed predation. The total amount of seed removal and the individual rate of seed removal were higher for P. caldenia than for G. triacanthos, in the native grassland than in the old field, and in autumn when rodent density was maximum. Overall, the role of rodents on woody seed removal varied according to the plant species and depending on the local conditions that vary through time and space.  相似文献   

17.
In a Pinus halepensis Mill. forest, a field experiment was designed to evaluate post-fire seed predation as affected by combinations of seed colour and soil substrates: light grey and black seeds combined with light grey ash, dark grey ash and pale brown sand. A survey of bird species inhabiting the area was also carried out and polyphenolic content of seed coat was assessed in seed lots of different colour. Light grey seeds were observed to be less predated on light grey ash, suggesting eucrypsis as a protective strategy against bird predation. On the contrary, no clear pattern was observed for the predation of black seeds on different substrates. In the study area both bird species breaking the seed coat and eating the endosperm and bird species swallowing the whole seed were monitored. We have estimated that more seeds were swallowed than broken, in all colour categories. Light grey seeds, which were found to have a higher content of polyphenols, were predated more than black seeds when exposed on the same substrate. Thus, no evidence was produced that the amount of polyphenols in seed coat could protect seeds from predation.  相似文献   

18.
Post‐dispersal predation can be a major source of seed loss in temperate forests. Little is known, however, about how predator‐mediated indirect interactions such as apparent competition alter survival patterns of canopy tree seeds. Understorey plants may enhance tree seed predation by providing sheltered habitat to granivores (non‐trophic pathway). In addition, occurrence of different tree seeds in mixed patches may lead to short‐term apparent competition between seed types, because of the granivores’ foraging response to changes in food patch quality (trophic pathway). We hypothesised that understorey bamboo cover and mixing of seed species in food patches would both increase tree seed predation in a Nothofagus dombeyi?Austrocedrus chilensis forest in northern Patagonia, Argentina. Seed removal experiments were conducted for three consecutive years (2000–2002) differing in overall granivory rates. Seed patch encounter and seed removal rates were consistently higher for the larger and more nutritious Austrocedrus seeds than for the smaller Nothofagus seeds. Seed removal was greater beneath bamboo than in open areas. This apparent competition pathway was stronger in a low‐predation year (2000) than in high‐predation years (2001–2002), suggesting a shift in microhabitat use by rodents. Patch composition had a significant, though weaker, impact on seed survival across study years, whereas seed density per patch enhanced encounter rates but did not influence seed removal. Removal of the less‐preferred Nothofagus seeds increased in the presence of Austrocedrus seeds, but the reciprocal indirect effect was not observed. However, this non‐reciprocal apparent competition between seed species was only significant in the high‐predation years. Our study shows that granivore‐mediated indirect effects can arise through different interaction pathways, affecting seed survival patterns according to the predator's preference for alternative seed types. Moreover, results indicate that the occurrence and relative strength of trophic vs non‐trophic pathways of apparent competition may change under contrasting predation scenarios.  相似文献   

19.
The influence of temporal and spatial heterogeneity in seed availability on the foraging behaviour of the harvester ant Messor arenarius was studied in an arid shrubland in the Negev Desert, Israel. The study investigated the implications of behavioural responses to heterogeneity in seed availability for the seed predation process and the potential for feedback effects on vegetation. Vegetation and seed rain were monitored across two landscape patch types (shrub patches and inter-shrub patches) in 1997. Shrub patches were shown to have higher plant and seed-rain density than inter-shrub patches. Patch use and seed selection by M. arenarius foragers were monitored through the spring, summer and autumn of 1997. After a pulse of seed production in the spring, the ants exhibited very narrow diet breadth, specialising on a single annual grass species, Stipa capensis. At this time, ants were foraging and collecting seeds mainly from inter-shrub patches. In the summer, diet breadth broadened and use of shrub patches increased, although the rate of seed collection per unit area was approximately equal in the two patch types. The increase in the use of shrub patches was due to colony-level selection of foraging areas with relatively high shrub cover and an increase in the use of shrub patches by individual foragers. In the autumn, a pulse of seed production by the shrub species Atractylis serratuloides and Noaea mucronata led to a reduction in diet breadth as foragers specialised on these species. During this period, foragers exhibited a large increase in the proportion of time spent in shrub patches and in the proportion of food items collected from shrub patches. The seasonal patterns in foraging behaviour showed linked changes in seed selection and patch use resulting in important differences in the seed predation process between the two landscape patch types. For much of the study period, there was higher seed predation pressure on the inter-shrub patches, which were of relatively low productivity compared with the shrub patches. This suggests that the seed predation process may help maintain the spatial heterogeneity in the density of ephemeral plants in the landscape.  相似文献   

20.
Experimental studies of seed predation in old-fields   总被引:6,自引:0,他引:6  
Summary In a pair of experiments conducted in old-field habitats in southwestern Michigan (USA), we examined rates of seed loss to post-dispersal predators (ants and rodents). Seeds from 4–6 species of biennial plants were tested over a range of seed densities and habitat types. We found that seed removal was significantly higher in vegetated habitats than in areas of disturbed soil (both simulated small-animal diggings and a plowed field). In the undisturbed vegetation, seed losses ranged from 1–20% of seeds removed/day.An exclosure experiment demonstrated that ants and rodents foraged selectively for seeds of the six plant species tested. Rodents (Peromyscus maniculatus) fed preferentially on species producing large seeds (predominantly Tragopogon dubius). Ants (Myrmica lobicornus) foraged on smaller seeds, although their foraging preferences were not based strictly on seed size.Seed density had only a minor effect on predation rate over the range of densities tested. Predators, instead appeared to treat each experimental group of seeds as a single prey patch. Consequently, predation intensity was quite variable over distances of <20 m within a relatively homogeneous section of habitat.These field experiments provide initial estimates of seed losses to post-dispersal predators in old-field habitats. Rates of seed loss were generally less than those reported from desert or semi-arid habitats. However, for some old-field species, seed losses averaged an appreciable 10–20% day. The selective nature of the seed predators, plusthe relative patchiness of predation intensity in space, suggest that postdispersal seed predation can play a role in determining the distribution and/or abundance of old-field herbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号