首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Isolation of human platelet glycoproteins.   总被引:1,自引:0,他引:1  
Human platelet glycoproteins were isolated from whole platelets by two methods. The first method, that of affinity chromatography on wheat germ agglutinin, is based on the known affinity of lectins for cell surface glycoproteins. When solubilized whole platelets are used as starting material for this procedure, elution with N-acetylglucosamine yields primarily a glycoprotein of Mr approximately 150 000 as estimated by sodium dodecyl sulfate-acrylamide gel electrophoresis. The second method is based on the ability of the chaotropic salt lithium diiodosalicylate to extract glycoprotein from particulate cell fractions in water-soluble form. This method yields three major glycopeptides with apparent molecular weights after sulfhydryl reduction of 145 000, 125 000, and 95 000 as estimated on 5.6% sodium dodecyl sulfate-acrylamide gels. Carboxymethylation of these preparations in the presence of sulfhydryl-reducing agent further resolves a glycoprotein of Mr approximately 165 000. Treatment of whole platelets by periodate oxidation and sodium[3H]-borohydride reduction labels the three major glycoproteins extracted by lithium diiodosalicylate and the glycoprotein of Mr approximately 150 000 isolated on wheat germ agglutinin confirming their surface orientation. However, glycoprotein with Mr approximately 165 000 resolved by carboxymethylation of the lithium diiodosalicylate extracted glycoprotein mixture was not labelled by this method, suggesting that it represents the granule protein with similar electrophoretic characteristics described by others. Phosphorylation of intact platelets with 32Pi also results in labelling of glycoproteins isolated by both methods, suggesting that these molecules traverse the bilipid layer of the platelet membrane, bearing reactive groups on both outer and cytoplasmic surfaces.  相似文献   

2.
3.
Polyacrylamide gel electrophoretic analysis and immunoprecipitation were used to study glycoproteins from purified Rauscher murine leukemia virus (R-MuLV) and from AKR thymic lymphoblastoid cell membranes. In addition to gp70, a minor glycoprotein of approximately 52,000 daltons (gp52) was demonstrated in purified R-MuLV preparations, which was antigenically related to gp70. Analysis of R-MuLV glycopeptides obtained after exhaustive Pronase digestion showed that gp70 has at least two different glycopeptide size classes with molecular weights of 5,100 and 2,900, respectively. gp52, however, contained only a single glycopeptide size class of approximately 5,100 daltons, indicating that the two glycoproteins contain distinct carbohydrate components. Trypsin treatment of R-MuLV converted gp70 into a product with a molecular mass of approximately 52,000 daltons as well as a 45,000-dalton minor product, with little effect on virus infectivity. Similarly, trypsin treatment of 125I-labeled glycoproteins derived from AKR mouse lymphoblastoid cell membranes generated fragments antigenically related to gp70 and similar in size to those obtained by trypsin treatment of R-MuLV. In both cases, the appearance of cleavage products was accompanied by a decrease in gp70 during trypsin treatment. The occurrence of glycosylated components antigenically related to gp70 in AKR membrane glycoprotein preparations and in purified R-MuLV preparations which were similar to those generated by trypsin treatment supports the concept that these minor components arise from proteolytic cleavage of gp70.  相似文献   

4.
The two components of thyroid plasma membranes known to interact with thyrotropin, i.e., a glycoprotein with specific thyrotropin binding activity and the gangliosides of the thyroid membranes, are shown to segregate differently when membranes are solubilized with lithium diiodosalicylate. Individually examined, the interaction of each component with thyrotropin exhibits a different sensitivity to salts. The data suggest that the thyrotropin receptor on the thyroid membrane is a complex which is composed of both glycoprotein and ganglioside components and that its properties are derived from each component.  相似文献   

5.
Plasma membranes were isolated from AH 66 cells, some of which had been labeled with [14C]glucosamine, by the following procedure: homogenization of cells which had been hardened by treatment with Zn ions, fractionation of the homogenate by sucrose density gradient centrifugation and purification of the membranes by partition in an aqueous two-phase polymer system. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) of the plasma membranes and subsequent staining of the gel for protein and carbohydrate, and determination of radioactivity on the gel eluates indicated the presence of at least 10 bands of glycoproteins. The major band contained 27% of the total radioactivity incorporated into the plasma membranes and was most heavily stained with the periodate-Schiff reagent. To isolate the major glycoprotein, the membranes were solubilized with 0.6 M lithium diiodosalicylate containing 0.5% Triton X-100, then the solution was treated with phenol. The major glycoprotein, obtained in the aqueous phase, was further purified mainly by repeated chromatographies on Sepharose 6B. The purified preparation was practically homogeneous on SDS-polyacrylamide gel electrophoresis, as judged by radioactivity determination and by carbohydrate staining, but contained small amounts of carbohydrate-free proteins. The major glycoprotein had an apparent molecular weight of 160,000, as determined by SDS-polyacrylamide gel electrophoresis. The final preparation contained about 44% carbohydrate on a weight basis, and the carbohydrate moiety was composed of glucosamine, galactosamine, galactose, mannose, fucose, and sialic acid. This composition indicates that the major glycoprotein contains both N- and O-glycosidically linked oligosaccharide moieties.  相似文献   

6.
Qualitative and quantitative changes in the protein and glycoprotein components of the plasma membrane of the cellular slime mould Dictyostelium discoideum have been detected by analysis of sodium dodecyl sulphate-polyacrylamide gel electrophoretic patterns. The amounts of proteins of subunit molecular weight 220 000, 91 000, 63 000, 59 000, 56 000 increased during the acquisition of aggregation competence, while proteins of subunit molecular weight 82 000 and 22 000 decreased. The amounts of glycoproteins with apparent subunit molecular weights 285 000, 150 000, 137 000, 100 000, 53 000, 50 500 and 30 500 increased during differentiation while a 125 000 dalton component decreased dramatically in amount. The neutral and amino sugar composition of the plasma membrane was also analyzed and found to remain essentially unchanged during the first 12 h of differentiation. The major sugars were mannose, fucose, and glucosamine; galactose and galactosamine were also present, but in lower amounts.  相似文献   

7.
The molecular structure of the plasma membrane of the haploid strain Saccharomyces cerevisiae X-2180 1A has been studied by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Protein and glycoprotein components have been identified and their apparent Mr determined. A glycoprotein showing an apparent Mr of 27 500 has been shown to be the main structural component. Treatment of the cells with cycloheximide prior to plasma membrane isolation resulted in a redistribution of the relative amounts of each protein band and a drastic reduction in the number of Schiff positive bands. It is postulated that treatment with this drug rids the plasma membrane of glycoprotein secretory components which are in the process of being secreted to the periplasmic space, thus allowing the study of the basic structural components of the organelle. The electrophoretic pattern of the internal membranes revealed close similarities with that of the plasma membrane and though two-dimensional electrophoresis might disclose greater differences, these similarities suggest a common origin for most of the components of both membranous systems. Finally, radioiodination techniques have been used in studying the asymmetric disposition of some of the components of the plasma membrane. At least five polypeptides were identified as located to the outer layer of the plasma membrane and two more glycopeptides were shown to span across the bilayer.  相似文献   

8.
It is known that ABO blood group substances in human erythrocyte membranes are sphingoglycolipids, but recently several authors have reported that the glycoproteins of the erythrocyte membranes also have ABO blood group activities in addition to MN blood group activities and virus hemagglutination inhibitor activity. We solubilized blood group A erythrocyte membranes with lithium diiodosalicylate and separated the glycoprotein fraction by phenol extraction and ethanol precipitation. This fraction was apparently not contaminated with glycolipid, but it showed weak blood group A activity. The activity of the glycoprotein of the erythrocyte membranes was one-sixth of that of the lgycolipid fraction from the same amount of membranes. The glycoprotein components were purified by Sephadex G-200 gel filtration in SDS. The main component isolated, PAS 1, still showed blood A activity.  相似文献   

9.
Human platelet glycoproteins were isolated from whole platelets by two methods. The first method, that of affinity chromatography on wheat germ agglutinin, is based on the known affinity of lectins for cell surface glycoproteins. When solubilized whole platelets are used as starting material for this procedure, elution with N-acetylglucosamine yields primarily a glycoprotein of Mr ≈ 150 000 as estimated by sodium dodecyl sulfate-acrylamide gel electrophoresis. The second method is based on the ability of the chaotropic salt lithium diiodosalicylate to extract glycoprotein from particulate cell fractions in water-soluble form. This method yields three major glycopeptides with apparent molecular weights after sulfhydryl reduction of 145 000, 125 000, and 95 000 as estimated on 5.6% sodium dodecyl sulfate-acrylamide gels. Carboxymethylation of these preparations in the presence of sulfhydryl-reducing agent further resolves a glycoprotein of Mr ≈ 165 000.Treatment of whole platelets by periodate oxidation and sodium[3H]borohydride reduction labels the three major glycoproteins extracted by lithium diiodosalicylate and the glycoprotein of Mr ≈ 150 000 isolated on wheat germ agglutinin confirming their surface orientation. However, glycoprotein with Mr ≈ 165 000 resolved by carboxymethylation of the lithium diiodosalicylate extracted glycoprotein mixture was not labelled by this method, suggesting that it represents the granule protein with similar electrophoretic characteristics described by others.Phosphorylation of intact platelets with 32Pi also results in labelling of glycoproteins isolated by both methods, suggesting that these molecules traverse the  相似文献   

10.
The plasma membrane components of five human B-cell lines and three human T-cell lines were separated by dodecyl sulfate polyacrylamide gel electrophoresis, incubated with the radioactive labeled lectins from lentil, castor bean, wheat germ, Phaseolus bean, peanut, gorse and the Roman snail and the molecular weights of the binding sites determined. The lentil, castor bean and wheat germ lectin bound to multiple components from molecular weights (Mr) 20 000 to 200 000 within the plasma membranes, whereas peanut lectin bound preferentially to glycoproteins of Mr 150 000 and 83 000 in B-cells, and 150 000 and 130 000 in T-cells. The gorse lectin bound to a 220 000 component in B-cells which was not labeled in T-cells.  相似文献   

11.
12.
Thymocyte plasma and nuclear membranes obtained by the procedure described in the accompanying paper were analyzed for their biochemical composition. Plasma membranes were very rich in phospholipid, cholesterol, sialic aicd; they did not contain nucleic acids. In comparison, nuclear membranes had a lower phospholipid to protein ratio and contained much less sialic acid and cholesterol. 50% of the cellular cholesterol and of the membrane-bound sialic acid were found in the plasma membranes, 14% in the nuclear membranes. Live cells were labeled with 131I, and the acid-insoluble radioactivity was followed in the subfractions. A good correlation with the distribution and enrichment of plasma membrane market-enzymes was obtained. Label enrichment was about 50-fold in the two lightest of the three plasma membrane fractions. 60% of the label was contained in the plasma membranes, only 4% in the nuclear membranes. Cross-contamination of these two types of membranes was thus negligible. Sodium dodecyl sulfate-gel electrophoresis revealed three different patterns specific for, respectively, plasma membranes, the microsomal-mitochondrial fraction, and nuclear membranes. Each pattern was characterized by a set of proteins and glycoproteins, among which high molecular weight glycoproteins could be considered as marker-proteins of, respectively, 280,000, 260,000, and 230,000 daltons. 131I-labeling of live cells tagged with a very high specific activity three glycoproteins of mol wt 280,000, 200,000, and 135,000 daltons. Nuclear membranes prepared from labeled isolated nuclei had a set of labeled proteins completely different from plasma membranes.  相似文献   

13.
Little is known about the ability of mammalian spermatogenic cells to synthesize plasma membrane components in the presence or absence of Sertoli cells. In this study, purified populations (greater than 90%) of pachytene spermatocytes or round spermatids were isolated by unit gravity sedimentation and cultured for 20-24 h in the presence of [35S]methionine or [3H]fucose. Cell viabilities remained over 90% during the course of these experiments. Plasma membranes were purified from these cells and analyzed by two-dimensional gel electrophoresis. Qualitatively, the same plasma membrane proteins were synthesized by both cell types with the exception of the major Concanavalin A-binding glycoprotein, p151; the synthesis of p151 is greatly diminished or inhibited after meiosis. [3H]Fucose was incorporated into at least 6 common glycoproteins of both cells. Eight components fucosylated with molecular weights from 35,000 to 120,000 were specific to pachytene spermatocyte membranes. One fast-migrating fucosylated component may represent an uncharacterized lipid whose synthesis is terminated after meiosis. Round spermatids specifically fucosylated two components with molecular weights of 45,000 and 80,000. These results demonstrate the viability of germ cells of the male mouse in short-term culture and show that they are capable of synthesizing and fucosylating plasma membrane components in the absence of Sertoli cells.  相似文献   

14.
The membranes of the cell surface, the endoplasmic reticulum, outer and inner mitochondrial leaflet and nuclear envelope were isolated from three human lymphoblastoid cell lines. Membrane components were separated by dodecyl sulfate polyacrylamide gel electrophoresis and the gels incubated with the radioiodinated lectins from lentil, castor bean, scarlet runner bean, gorse seed and Roman snail. After gel slicing and counting, the molecular weights of the lectin binding sites were determined. About 20 glycoproteins were identified as constituents of the plasma membrane, a similar glycoprotein distribution was observed in the endoplasmic reticulum. The outer mitochondrial membrane contained some impurities from the plasma membrane, the inner mitochondrial membrane lacked specific lectin receptors. Two prominent glycoproteins with molecular weights of 70 000 and 60 000 were identified with the castor bean lectin in the nuclear envelope.  相似文献   

15.
The two different regions of the plasma membrane, i.e. apical and basolateral membranes, of intestinal epithelial cells were analyzed as to their proten components. They showed very contrasting profiles on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apical membranes possessed several major components with apparent molecular weights larger than 108 000, most of which were also periodic acid-Schiff reagent positive. In contrast, there were no protein components with corresponding molecular weights in the basolateral membrane. The electrophoretic profile of the latter was strinkingly simple. The dominant band was assigned a molecular weight of 101 000 and was periodic acid-Schiff reagent negative. No major components were shared by the two membranes.  相似文献   

16.
Plasma membrane extracts from Herpes simplex virus type 1 transformed hamster embryo fibroblasts were chromatographed on Lens culinaris lectin coupled to Sepharose (LcH-Sepharose) and analysed by dodecyl sulphate polyacrylamide gel electrophoresis. Coomassie blue-staining revealed two major protein bands with apparent molecular weights of 125 000 and of about 75 000–90 000. In plasma membranes isolated from these tumor cells prior labeled with [3H]fucose or [3H]glucosamine these bands contained the highest amounts of incorporated radioactivity. Separation by LeH-Sepharose-affinity chromatography as well as metabolic labeling clearly demonstrates their glycoprotein character. The 125 000 protein coincides with alkaline phosphodiesterase I activity with a Km of 6 · 10?4 M for TMP p-nitrophenyl ester and is competitively inhibited by UDP-N-acetylglucosamine. This enzymatic activity is also present in normal hamster embryo fibroblasts. Gel electrophoresis of the Lens culinaris lectin-binding glycoproteins from plasma membranes of normal hamster embryo fibroblasts additionally revealed a strong alkaline phosphatase activity represented by an apparent molecular weight of 150 000, while HSV1 hamster tumor cells contain only a very weak activity of this enzyme activity. HSV-lytically infected cells, however, have unchanged levels of alkaline phosphatase activity, whereas alkaline phosphodiesterase activity increases slightly.  相似文献   

17.
Further characterization of HeLa S3 plasma membrane ghosts   总被引:1,自引:1,他引:0  
A plasma membrane fraction of HeLa S3 cells, consisting of ghosts, is characterized more fully. A simple procedure is described which permits light and electron microscope study of the plasma membrane fraction through the entire depth of the final product pellet and through large areas parallel to the surface. Contamination by nuclei is 0.14%, too little for DNA detection by the diphenylamine reaction. Contamination by rough endoplasmic reticulum and ribosomes is small, a single ghost containing about 3% of the RNA in a single cell. Mitochondria were not encountered. Electron microscopy also shows (a) small vesicles associated with the outer surface of the ghosts, and (b) a filamentous web at the inner face of the ghost membrane. Sodium dodecyl sulfate (SDS)-polyacrylamide gel analysis shows that of the many Coomassie Blue-stained bands two were prominent. One, 43,000 daltons, co-migrated with purified rabbit muscle actin and constituted about 7.5% of the plasma membrane protein. The other major band, 34,000 daltons, was concentrated in the plasma membrane fraction. Two major glycoproteins detected by autoradiography of [14C]fucose-labeled glycoproteins on the gels, had apparent molecular weights of 35,000 daltons and 32,000 daltons. These major bands did not stain with Coomassie Blue. There were many other minor glycoprotein bands in the 200,000- to 80,000-dalton range. Ouabain-sensitive, Na+, K+-adenosine triphosphatase (ATPase) activity of the ghost fraction is purified 9.1 (+/- 2.2) times over the homogenate; recover of the activity is 12.0 (+/- 3.8%) of the homogenate. Enrichment and recovery of fucosylglycoprotein parallel those for ouabain-sensitive Na+, K+-ATPase activity. Fucosyl glycoprotein is recovered more than the enzyme activity in a smooth membrane vesicle fraction probably containing the bulk of plasma membrane not recovered as ghosts.  相似文献   

18.
Oligodendroglial plasma membranes are complex structures composed of a heterogeneous mixture of proteins and glycoproteins. The Coomassie stained gel patterns showed a maximum of 40 proteins with molecular weights ranging from > 200 000 to 12 500. Autoradiography was used to detect binding of radioiodinated lectins to glycoproteins. With concanavalin A, 5 major glycoproteins were seen; with wheat germ agglutinin, 2 major glycoproteins with approximate molecular weights of 95 000 and 78 000 were found; with Ulex europaeus, 7 major glycoproteins were observed. Additional minor bands were also seen. The impermeant probe diazodi[125I]iodosulfanilic acid was used to radiolabel intact cells. It was found that 5 major proteins were radiolabeled in the plasma membranes. In all cases, the whorls of membrane lamellae produced in culture by oligodendroglia tend to have a somewhat less complicated pattern with fewer proteins and glycoproteins than the plasma membranes. However, the whorls of membrane lamellae have far more complicated protein patterns than myelin.  相似文献   

19.
1. Radioactivity from [3H]glucosamine is rapidly incorporated into cellular fractions of lens epithelial cells cultured in vitro. The incorporated isotope appears largely in glycoproteins of the cell surface that are exposed to trypsin and are released into a soluble form by proteolysis of intact cells. Glycoproteins are also secreted by cultured cells and can be recovered in the culture fluids. Sodium dodecysulphate-polyacrylamide gell electrophoresis shows that a range of glycoproteins with apparent molecular weights from approximately 14000 to 120000 are present. The relationships of these glycoproteins to collagen and the non-collagenous glycoproteins of lens basement membranes are discussed. 2. A plasma membrane fraction obtained from non-trypsinised lens epithelial cells contains one major glycoprotein of apparent molecular weight 120000. A major non-glycosylated polypeptide of molecular weight about 38000 detectable by Bloemendal et al. (1972) in plasma membranes of differentiated lens fibre cells was not prominent in lens epithelial cell membranes. 3. Examination of lens basement membranes extracted in various ways failed to reveal major glycoproteins of low molecular weight. Higher molecular weight glycoproteins, some of them related to collagen, were present.  相似文献   

20.
Plasma-membrane glycoproteins from the three different functional domains of the rat hepatocyte were radioactively labelled by oxidation with NaIO4, followed by reduction with NaB3H4. Analysis of the radioactively labelled glycoproteins by polyacrylamide-gel electrophoresis revealed the presence of at least 12 major sialoglycoproteins in each different region of the hepatocyte surface. The Mr-110 000 component was homogeneously distributed over the plasma membrane, whereas the Mr-90 000 polypeptide was only located at the sinusoidal face. These radiolabelled glycoproteins were solubilized in 1% Triton X-100, and the soluble fraction was subjected to affinity chromatography on Sepharose-conjugated wheat-germ agglutinin (WGA). The labelled glycoproteins were poorly bound to WGA. Membrane glycoproteins were also labelled by the galactose oxidase/NaB3H4 method. The results show that the polypeptides with apparent Mr 170 000 from the sinusoidal, 230 000 from the canalicular and 170 000 from the lateral membranes were specifically labelled. When the membranes were treated with neuraminidase and galactose oxidase/NaB3H4, the electrophoretic patterns showed changes in the apparent Mr values of the glycoproteins, owing to loss of sialic acid, and a clear increase in labelling in the sinusoidal and canalicular membranes compared with the lateral membranes. When these labelled membranes were solubilized in 1% Triton X-100 and subjected to affinity chromatography on Sepharose-conjugated Ricinus communis agglutinin and/or Lens culinaris agglutinin, the results showed that the former columns efficiently bound the radiolabelled glycoproteins, whereas the latter columns bound poorly. The results show that there is a differential distribution of glycoproteins along the hepatocyte's surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号