首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regional differences in the sweating responses of older and younger men.   总被引:2,自引:0,他引:2  
Ten older (60-71 yr) and nine younger (20-25 yr) active healthy men were exposed to passive heating [by placing the lower legs and feet in a 43 degrees C water bath for 60 min while sitting in a warm (35 degrees C, 45% relative humidity) chamber] in summer and winter. The increase in rectal temperature (Tre) was significantly (P less than 0.05) greater, and mean skin temperature and forearm blood flow were lower, for the older men in both seasons. Total sweating rate was lower in the older men, but significantly (P less than 0.05) so only in the summer. The Tre threshold for sweating was unaffected by either age or site (back vs. thigh). The local sweating rate (msw) on the thigh was significantly lower (P less than 0.05) for the older men throughout the exposure, whereas there were no significant age-related differences for the average or peak values of back msw, although lesser sweating on the back occurred during the first 30 min of exposure. The decreased msw on the thigh was due to a lower sweat output per heat-activated sweat gland rather than from recruitment of fewer glands. It was concluded that regional differences exist in the age-related decrement in sweat gland function. Furthermore, these findings suggest that aging leads to a decreased ability to maintain body temperature with passive heating of the extremities, which may be attributed in part to decreased regional sweat gland function.  相似文献   

2.
To examine the mechanisms and regional differences in the age-related decrement of skin blood flow, 11 young (age 20-25 years) and 10 older (age 64-76 years) men were exposed to a mild heat stress by immersing their feet and lower legs in water at 42 degrees C for 60 min, while they were sitting in near thermoneutral conditions [25 degrees C and 45% relative humidity (rh)]. During the equilibrium period (25 degrees C and 45% rh) before the heat test, no group differences were observed in rectal (Tre) and mean skin (Tsk) temperatures or mean arterial pressure (MAP). During passive heating, Tsk was significantly lower in the older men 20 min after commencing exposure (P<0.001), although there were similar increases in Tre in both groups. Exposure time and age did not affect MAP. The local sweating rate (m(sw)) and the percentage change in skin blood flow by laser Doppler flowmetry (%LDF) relative to baseline values on the chest, back, forearm and thigh were significantly lower in the older men (P<0.001), especially on the thigh. After starting the heat exposure, three temporal phases were observed in the relationship between %LDF and m(sw) at most sites in each subject. In phase A, %LDF increased but with no increase in m(sw). In phase B, m(sw) increased but with no secondary increase in %LDF. Finally, in phase C, there were proportional increases in %LDF and m(sw). The increase in %LDF in phase A was significantly lower on the forearm and thigh (P<0.05) for the older men, but not on the chest and back. In phase C, the slopes of the regression lines between %LDF and m(sw) were lower for the older men on the back (P<0.03), forearm (P = 0.08) and thigh (P<0.03), but not on the chest. These results would suggest that the age-related decrement in skin blood flow in response to passive heating may be due in part to a smaller release of vasoconstrictor tone and to less active vasodilatation once sweating begins. Regional differences exist in the impaired vasoconstriction and active vasodilatation systems.  相似文献   

3.
We tested the hypothesis that local sweat rates would not display a systematic postadaptation redistribution toward the limbs after humid heat acclimation. Eleven nonadapted males were acclimated over 3 wk (16 exposures), cycling 90 min/day, 6 days/wk (40 degrees C, 60% relative humidity), using the controlled-hyperthermia acclimation technique, in which work rate was modified to achieve and maintain a target core temperature (38.5 degrees C). Local sudomotor adaptation (forehead, chest, scapula, forearm, thigh) and onset thresholds were studied during constant work intensity heat stress tests (39.8 degrees C, 59.2% relative humidity) conducted on days 1, 8, and 22 of acclimation. The mean body temperature (Tb) at which sweating commenced (threshold) was reduced on days 8 and 22 (P < 0.05), and these displacements paralleled the resting thermoneutral Tb shift, such that the Tb change to elicit sweating remained constant from days 1 to 22. Whole body sweat rate increased significantly from 0.87 +/- 0.06 l/h on day 1 to 1.09 +/- 0.08 and 1.16 +/- 0.11 l/h on days 8 and 22, respectively. However, not all skin regions exhibited equivalent relative sweat rate elevations from day 1 to day 22. The relative increase in forearm sweat rate (117 +/- 31%) exceeded that at the forehead (47 +/- 18%; P < 0.05) and thigh (42 +/- 16%; P < 0.05), while the chest sweat rate elevation (106 +/- 29%) also exceeded the thigh (P < 0.05). Two unique postacclimation observations arose from this project. First, reduced sweat thresholds appeared to be primarily related to a lower resting Tb, and more dependent on Tb change. Second, our data did not support the hypothesis of a generalized and preferential trunk-to-limb sweat redistribution after heat acclimation.  相似文献   

4.
Physiological responses of eight postmenopausal older women (age 52-62 yr) and eight younger women (age 20-30 yr) were compared during moderate intensity exercise in a hot dry environment (48 degrees C dry bulb, 25 degrees C wet bulb). The age groups were matched on the basis of maximal O2 consumption (VO2max), body surface area, and body fatness. After heat acclimation the women walked at 40% VO2max for up to 2 h in the hot dry environment while heart rate (HR), rectal temperature (Tre), mean skin temperature (Tsk), whole-body sweating rate (Msw), and local sweating rates (msw; forearm, chest, and scapula) were measured. Additionally, the density of heat-activated sweat glands (HASG) was determined and average sweat gland flow (SGF) was calculated for the scapular area. Although no differences between age groups were found in HR response (when analyzed as percent of maximal HR) or Tsk, the older women had a significantly higher Tre throughout the heat-exercise session. The greater heat storage of the older women may be explained by their significantly lower Msw and msw. There were no differences between the younger and older women in the density of HASG after 30 min; therefore, the lower msw reflects a diminished output per HASG rather than a decrease in the number of sweat glands recruited. The diminished thermoregulatory ability of the older women, unrelated to differences in VO2max, appears to reflect either 1) a diminished response of the sweat glands to central and/or peripheral stimuli, or 2) an age-related structural alteration in the eccrine glands or surrounding skin cells.  相似文献   

5.
 The purpose of this investigation was to examine the effects of aging and aerobic fitness on exercise- and methylcholine-induced sweating responses during heat acclimation. Five younger [Y group – age: 23±1 (SEM) years; maximal oxygen consumption (V.O2max): 47±3 ml·kg–1·min–1], four highly fit older (HO group – 63±3 years; 48±4 ml·kg–1·min–1) and five normally fit older men (NO group – 67±3 years; 30±1 ml·kg–1·min–1) who were matched for height, body mass and percentage fat, were heat acclimated by daily cycle exercise (≈35% V.O2max for 90 min) in a hot (43°C, 30% RH) environment for 8 days. The heat acclimation regimen increased performance time, lowered final rectal temperature (T re) and percentage maximal heart rate (%HRmax), improved thermal comfort and decreased sweat sodium concentration similarly in all groups. Although total body sweating rates (M.sw) during acclimation were significantly greater in the Y and HO groups than in the NO group (P<0.01) (because of the lower absolute workload in the NO group), the M.sw did not change in all groups with the acclimation sessions. Neither were local sweating rates (m. sw) on chest, back, forearm and thigh changed in all groups by the acclimation. The HO group presented greater forearm m. sw (30–90 min) values and the Y group had greater back and thigh m. sw (early in exercise) values, compared to the other groups (P<0.001). In a methylcholine injection test on days immediately before and after the acclimation, the order of sweat output per gland (SGO) on chest, back and thigh was Y>HO>NO, and on the forearm Y=HO>NO. No group differences were observed for activated sweat gland density at any site. The SGO at the respective sites increased in the post-acclimation test regardless of group (P<0.01), but on the thigh the magnitude of the increase was lower in the NO (P<0.02) and HO (P=0.07) groups than in the Y group. These findings suggest that heat tolerance and the improvement with acclimation are little impaired not only in highly fit older but also normally fit older men, when the subjects exercised at the same relative exercise intensity. Furthermore, the changes induced by acclimation appear associated with an age-related decrease in V.O2max. However methylcholine-activated SGO and the magnitude of improvement of SGO with acclimation are related not only to V.O2max but also to aging, suggesting that sensitivity to cholinergic stimulation decreases with aging. Received: 8 May 1998/Accepted: 5 October 1998  相似文献   

6.
In a warm environment at ambient temperatures between 25 degrees and 38 degrees C (relative humidity 50%-60%) the relationship between sympathetic activity in cutaneous nerves (SSA) and pulses of sweat expulsion was investigated in five young male subjects. The SSA was recorded from the peroneal nerve using a micro-electrode. Sweat expulsion was identified on the sweat rate records obtained from skin areas on the dorsal side of the foot, for spontaneous sweating and drug-induced sweating, using capacitance hygrometry. Sweat expulsion was always preceded by bursts of SSA with latencies of 2.4-3.0 s. This temporal relationship between bursts of SSA and sweat expulsion was noted not only in various degrees of thermal sweating but also in the sweating evoked by arousal stimuli, or by painful electric stimulation. The amplitude of the sudomotor burst was linearly related to the maximal rate of increase of the corresponding sweat expulsion, the amplitude of the expulsion and the integrated amount of sweat produced for the duration of the expulsion. The results provide direct evidence that sweat expulsion reflects directly centrally-derived sudomotor activity.  相似文献   

7.
The main objective of this study was to determine the central mechanisms involved in suppression of thermal sweating after seasonal acclimatization (SA) during passive heating (immersing the legs in 43 °C hot water for 30 min). Testing was performed in July (before-SA) and August (after-SA) [25.2±2.2 °C, 73.9±10.3% relative humidity (RH), Cheonan (Chungnam,126° 52′N, 33.38′E), in the Republic of Korea. All experiments were carried out in an automated climatic chamber (25.0±0.5 °C and RH 60.0±3.00%). Twelve healthy men (height, 174.6±5.40 cm; weight, 65.4±5.71 kg; age, 22.7±2.90 yr) participated. The local sweat onset time was delayed in the after-SA compared to that in the before-SA (p<0.001). The local sweat rate and whole body sweat loss volume decreased in the after-SA compared to those in the before-SA (p<0.001). In addition, evaporative loss volume decreased significantly in the after-SA compared to that in the before-SA [chest, upper-back, thigh and forearm (p<0.001)]. Changes in tympanic temperature and mean body temperature were significantly lower (p<0.05) and the basal metabolic rate decreased significantly in the after-SA compared to those in the before-SA (p<0.001). These results suggest that maintenance of a lower body temperature and basal metabolic rate can occur and blunt the central sudomotor mechanisms following seasonal acclimatization, which suppresses sweating sensitivity.  相似文献   

8.
The dynamics of sweating was investigated at rest in 8 men and 8 women. Electrical skin resistance (ESR), rectal temperature (Tre) and mean skin temperature (Tsk) were measured in subjects exposed to 40 degrees C environmental temperature, 30% relative air humidity, and 1 m X s-1 air flow. Sweat rate was computed from continuous measurement of the whole body weight loss. It was found that increases in Tre, Tsk and mean body temperature (Tb) were higher in women than in men by 0.16, 0.38 and 0.21 degrees C, but only the difference in delta Tb was significant (p less than 0.05). The dynamics of sweating in men and women respectively, was as follows: delay (td) 7.8 and 18.1 min (p less than 0.01), time constant (tau) 7.5 and 8.8 min (N.S.), inertia time (ti) 15.3 and 26.9 min (p less than 0.002), and total body weight loss 153 and 111 g X m-2 X h-1 (p less than 0.001). Dynamic parameters of ESR did not differ significantly between men and women. Inertia times of ESR and sweat rate correlated in men (r = 0.93, p less than 0.001), and in women (r = 0.76, p less than 0.02). In men, delta Tre correlated with inertia time of sweat rate (r = 0.81, p less than 0.01) as well as with the inertia time of ESR (r = 0.83, p less than 0.001). No relation was found between delta Tre and the dynamics of sweating in women. It is concluded that the dynamics of sweating plays a decisive role in limiting delta Tre in men under dry heat exposure. The later onset of sweating in women does not influence the rectal temperature increase significantly. In women, delta Tre is probably limited by a complex interaction of sweating, skin blood flow increase, and metabolic rate decrease.  相似文献   

9.
A side-effect of endoscopic thoracic sympathectomy (ETS) is compensatory hyperhidrosis (CH), characterized by excessive sweating from skin areas with intact sudomotor function. The physiological mechanism of CH is unknown, but may represent an augmented local sweat rate from skin areas with uninterrupted sympathetic innervation based on evaporative heat balance requirements. For a given combination of activity and climate, the same absolute amount of evaporation (if any) is needed to balance the rate of metabolic heat production both pre- and post-ETS. However, the rate of local sweating per unit of skin surface area with intact sudomotor activity must be greater post-ETS as evaporation must be derived from a smaller skin surface area. Under conditions with high evaporative requirements, greater degradations in sweating efficiency associated with an increased dripping of sweat should also occur post-ETS, further pronouncing the sweat rate required for heat balance. In conclusion, in addition to the potential role of psychological stimuli for increased sudomotor activity, the existence of CH post-ETS can be described by the interplay between fundamental thermoregulatory physiology and altered heat balance biophysics and does not require a postoperative alteration in physiological control.  相似文献   

10.
To assess potential mechanisms responsible for the lower sudomotor thermosensitivity in women during exercise, we examined sex differences in sudomotor function and skin blood flow (SkBF) during exercise performed at progressive increases in the requirement for heat loss. Eight men and eight women cycled at rates of metabolic heat production of 200, 250, and 300 W/m(2) of body surface area, with each rate being performed sequentially for 30 min. The protocol was performed in a direct calorimeter to measure evaporative heat loss (EHL) and in a thermal chamber to measure local sweat rate (LSR) (ventilated capsule), SkBF (laser-Doppler), sweat gland activation (modified iodine-paper technique), and sweat gland output (SGO) on the back, chest, and forearm. Despite a similar requirement for heat loss between the sexes, significantly lower increases in EHL and LSR were observed in women (P ≤ 0.001). Sex differences in EHL and LSR were not consistently observed during the first and second exercise periods, whereas EHL (348 ± 13 vs. 307 ± 9 W/m(2)) and LSR on the back (1.61 ± 0.07 vs. 1.20 ± 0.09 mg·min(-1)·cm(-2)), chest (1.33 ± 0.06 vs. 1.08 ± 0.09 mg·min(-1)·cm(-2)), and forearm (1.53 ± 0.07 vs. 1.20 ± 0.06 mg·min(-1)·cm(-2), men vs. women) became significantly greater in men during the last exercise period (P < 0.05). At each site, differences in LSR were solely due to a greater SGO in men, as opposed to differences in sweat gland activation. In contrast, no sex differences in SkBF were observed throughout the exercise period. The present study demonstrates that sex differences in sudomotor function are only evidenced beyond a certain requirement for heat loss, solely through differences in SGO. In contrast, the lower EHL and LSR in women are not paralleled by a lower SkBF response.  相似文献   

11.
Tropical subjects regulate core temperature with less amount of sweat against heat compared to temperate subjects through long-term heat-acclimatization. The purpose of the study is to determine whether acclimatization in tropical subjects decay during a stay in temperate area. The aim of this study, therefore, was to investigate the possible changes in the peripheral sweating mechanisms. Local sweating response activated by acetylcholine (ACh) applied iontophoretically among Malaysians with varying duration of stay in Japan and Japanese resident subjects. Directly activated (DIR) and axon reflex (AXR)-mediated sweating during ACh iontophoresis were measured by capacitance hygrometer (quantitative sudomotor axon reflex test, QSART) QSART was performed in a thermoneutral condition (24±0.5 °C, 40±3% rh). The sweat onset-time after the current loading was 1.05 min shorter in Malaysian with long-term stay in Japan (MLJ) than in Malaysian, and the AXR(1), AXR(2) and DIR sweating in MLJ were larger than Malaysian. From these results, suppressed neuroglandular response to ACh was confirmed in Malaysians. It is suggested that long-term heat-acclimatization acquired in tropical subjects may decay after immigration to temperate area.  相似文献   

12.
This investigation tested the hypothesis that cholinergic sweat function of individuals with multiple sclerosis (MS) (MS-Con; n = 10) is diminished relative to matched healthy control subjects (Con; n = 10). In addition, cholinergic sweat function was determined before and after 15 wk of aerobic training in a subgroup of individuals with MS (MS-Ex; n = 7). Cholinergic sweating responses were assessed via pilocarpine iontophoresis on ventral forearm skin. A collection disk placed over the stimulated area collected sweat for 15 min. Sweat rate (SR) was calculated by dividing sweat collector volume by collection area and time. Iodine-treated paper was applied to the stimulated area to measure number of activated sweat glands (ASG). Sweat gland output (SGO) was calculated by dividing SR by density of glands under the collector. Sweat gland function was determined in MS-Ex to test the hypothesis that exercise training would increase sweating responses. No differences in ASG were observed between MS-Con and Con. SR and SGO in MS-Con [0.18 mg.cm(-2).min(-1) (SD 0.08); 1.74 microg.gland(-1).min(-1) (SD 0.79), respectively] were significantly lower (P < or = 0.05) than in Con [0.27 mg.cm(-2).min(-1) (SD 0.10); 2.43 microg.gland(-1).min(-1) (SD 0.69)]. Aerobic exercise training significantly (P < or = 0.05) increased peak aerobic capacity in MS-Ex [1.86 (SD 0.75) vs. 2.10 (SD 0.67) l/min] with no changes in ASG, SR, and SGO. Sweat gland function in individuals with MS is impaired relative to healthy controls. Fifteen weeks of aerobic training did not increase stimulated sweating responses in individuals with MS. Diminished peripheral sweating responses may be a consequence of impairments in autonomic control of sudomotor function.  相似文献   

13.
The aim of the present work was to estimate the dynamics and efficiency (eta sw) of sweating, and thermoregulatory index (TI) defined as a ratio of heat loaded the body to the heat removed to the environment. In the first part of this work 22 men exercised with an intensity of 50% VO2 max. in 22 degrees C, 16 men were exposed to 40 degrees C at rest, and 9 men exercised at the level of 50% VO2 max. at 30 degrees C. In the second part, 8 men and 8 women were exposed to 40 degrees C before and after dehydration (1% of body mass, approximately), 8 men exercised at 23 degrees C before and after hyperhydration (35 ml/kg of body mass) and 22 men exercised before and after 3 months of endurance training. Body heat balance, rectal (Tre), tympanic (Tty) and mean skin (Tsk) temperatures were measured in all subjects. TI was greater during simultaneous (0.84) than during separate endo- (0.76, p less than 0.01) or exogenous (0.67, p less than 0.001) heat loads. The respective values of eta sw were 0.82; 0.57 (p less than 0.001) and 0.78 (p less than 0.001). No difference in TI was found between men and women. Dynamics of sweating was greater in men but efficiency of sweating was greater in women. Dehydration before heat exposure decreased both dynamics of sweating and TI but it increased eta sw in men. As a result Tre was greater in dehydrated (0.45 degrees C) than in normally hydrated men (0.31 degrees C, p less than 0.002). Dehydration did not affect the measured variables in women. Hyperhydration of exercising men caused an increase in TI from 0.72 to 0.82 (p less than 0.05) and in eta sw from 0.57 to 0.81 (p less than 0.01). In men exercising after endurance training the onset of sweating was shortened from 4.0 to 0.9 min (p less than 0.002). TI increased from 0.76 to 0.89 (p less than 0.001), eta sw increased from 0.57 to 0.74 (p less than 0.02) whereas Tty was lower (1.10 and 0.58 degrees C, p less than 0.001, respectively). It is concluded that dynamics and efficiency of sweating, as well as the thermoregulatory index depend on the type of heat load. Men and women tolerate dry heat equally well. Dehydration changes thermoregulatory function in men but not in women. Hyperhydration before exercise and particularly endurance training increase tolerance of endogenous heat.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Control of heat-induced cutaneous vasodilatation in relation to age   总被引:1,自引:0,他引:1  
Well matched unacclimatised older (age 55-68, 4 women, 2 men) and younger (age 19-30, 4 women, 2 men) subjects performed 75 min cycle exercise (approximately 40% VO2max) in a hot environment (37 degrees C, 60% rh). Rectal temperature (Tre), mean skin temperature (Tsk), arm blood flow (ABF, strain gauge plethysmography), and cardiac output (Q, CO2 rebreathing) were measured to examine age-related differences in heat-induced vasodilatation. Tre and Tsk rose to the same extent in each group during the exposure. There was no significant intergroup difference in sweat rate (older: 332 +/- 43 ml.m-2.h-1, younger: 435 +/- 49 ml.m-2.h-1; mean +/- SEM). However, the older subjects responded to exercise in the heat with a lower ABF response which could be attributed to a lower Q for the same exercise intensity. The slope of the ABF-Tre relationship was attenuated in the older subjects (9.3 +/- 1.3 vs 17.9 +/- 3.3 ml.100 ml-1.min-1.degrees C-1, p less than 0.05), but the Tre threshold for vasodilatation was about 37.0 degrees C for both groups. These results suggest an altered control of skin vasodilatation during exercise in the heat in older individuals. This attenuated ABF response appears to be unrelated to VO2max, and may reflect an age-related change in thermoregulatory cardiovascular function.  相似文献   

15.
The effects of modafinil on heat thermoregulatory responses were studied in 10 male subjects submitted to a sweating test after taking 200 mg of modafinil or placebo. Sweating tests were performed in a hot climatic chamber (45 degrees C, relative humidity <15%, wind speed = 0.8 m x s(-1), duration 1.5 h). Body temperatures (rectal (Tre) and 10 skin temperatures (Tsk)), sweat rate, and metabolic heat production (M) were studied as well as heart rate (HR). Results showed that modafinil induced at the end of the sweating test higher body temperatures increases (0.50 +/- 0.04 versus 0.24 +/- 0.05 degrees C (P < 0.01) for deltaTre and 3.64 +/- 0.16 versus 3.32 +/- 0.16 degrees C (P < 0.05) for deltaTsk (mean skin temperature)) and a decrease in sweating rate throughout the heat exposure (P < 0.05) without change in M, leading to a higher body heat storage (P < 0.05). AHR was also increased, especially at the end of the sweating test (17.95 +/- 1.49 versus 12.52 +/- 1.24 beats/min (P < 0.01)). In conclusion, modafinil induced a slight hyperthermic effect during passive dry heat exposure related to a lower sweat rate, probably by its action on the central nervous system, and this could impair heat tolerance.  相似文献   

16.
Natives of the tropics are able to tolerate high ambient temperatures. This results from their long-term residence in hot and often humid tropical climates. This study was designed to compare the peripheral mechanisms of thermal sweating in tropical natives with that of their temperate counterparts. Fifty-five healthy male subjects including 20 native Koreans who live in the temperate Korean climate (Temperate-N) and 35 native tropical Malaysian men that have lived all of their lives in Malaysia (Tropical-N) were enrolled in this study after providing written informed consent to participate. Quantitative sudomotor axon reflex testing after iontophoresis (2 mA for 5 min) with 10% acetylcholine (ACh) was used to determine directly activated (DIR) and axon reflex-mediated (AXR) sweating during ACh iontophoresis. The sweat rate, activated sweat gland density, sweat gland output per single gland activated, and oral and skin temperature changes were measured. The sweat onset time of AXR (nicotinic-receptor-mediated) was 56 s shorter in the Temperate-N than in the Tropical-N subjects (P < 0.0001). The nicotinic-receptor-mediated sweating activity AXR (1), and the muscarinic-receptor-mediated sweating activity DIR, in terms of sweat volume, were 103% and 59% higher in the Temperate-N compared to the Tropical-N subjects (P < 0.0001). The Temperate-N group also had a 17.8% (P < 0.0001) higher active sweat gland density, 35.4% higher sweat output per gland, 0.24°C higher resting oral temperature, and 0.62°C higher resting forearm skin temperature compared to the Tropical-N subjects (P < 0.01). ACh iontophoresis did not influence oral temperature, but increased skin temperature near where the ACh was administered, in both groups. These results suggest that suppressed thermal sweating in the Tropical-N subjects was, at least in part, due to suppressed sweat gland sensitivity to ACh through both recruitment of active sweat glands and the sweat gland output per each gland. This physiological trait guarantees a more economical use of body fluids, thus ensuring more efficient protection against heat stress.  相似文献   

17.
Based on the hypothesis that the relation between sweating rate and body temperature should be different during exercise and rest after exercise, we compared the sweating response during exercise and recovery at a similar body temperature. Healthy male subjects performed submaximal exercise (Experiment 1) and maximal exercise (Experiment 2) in a room at 27° C and 35% relative humidity. During exercise and recovery of 20 min after exercise, esophageal temperature (Tes), mean skin temperature, mean body temperature ( ), chest sweating rate ( ), and the frequency of sweat expulsion (F SW) were measured. In both experiments, andF SW were clearly higher during exercise than recovery at a similar body temperature (Tes, ). was similar during exercise and recovery, or a little less during the former, at a similarF SW. It is concluded that the sweating rate during exercise is greater than that during recovery at the same body temperature, due to greater central sudomotor activity during exercise. The difference between the two values is thought to be related to non-thermal factors and the rate of change in mean skin temperature.  相似文献   

18.
In summer and winter, young, sedentary male (N = 5) and female (N = 7) subjects were exposed to heat in a climate chamber in which ambient temperature (Ta) was raised continuously from 30 to 42°C at a rate of 0.1°C min−1 at a relative humidity of 40%. Sweat rates (SR) were measured continuously on forearm, chest and forehead together with tympanic temperature (Tty), mean skin temperature ( [`T] s ) \left( {\overline {\hbox{T}} {\hbox{s}}} \right) and mean body temperature ( [`T] b ) \left( {\overline {\hbox{T}} {\hbox{b}}} \right) . The rate of sweat expulsions (Fsw) was obtained as an indicator of central sudomotor activity. Tty and ( [`T] b ) \left( {\overline {\hbox{T}} {\hbox{b}}} \right) were significantly lower during summer compared with winter in males; SR was not significantly different between summer and winter in males, but was significantly higher during summer in females; SR during winter was higher in males compared with females. The regression line relating Fsw to ( [`T] b ) \left( {\overline {\hbox{T}} {\hbox{b}}} \right) shifted significantly from winter to summer in males and females, but the magnitude of the shift was not significantly different between the two subject groups. The regression line relating SR to Fsw was steepened significantly from winter to summer in males and females, and the change in the slope was significantly greater in females than in males. Females showed a lower slope in winter and a similar slope in summer compared to males. It was concluded that sweating function was improved during summer mediated by central sudomotor and sweat gland mechanisms in males and females, and, although the change of sweat gland function from winter to summer was greater in females as compared with males, the level of increased sweat gland function during summer was similar between the two subject groups.  相似文献   

19.
Human sweating is generally caused by thermal and mental stimuli. The former role is well known as a response for thermo regulation. The insensible perspiration may be generally controlled by the autonomic nervous system, and the responses due to mental and/or emotional stress by the sympathetic nervous system. As human sweating is directly concerned with some nervous systems, sweating may be a good indicator for the body reactions of feeling, surprise, emotional stress and etc. The measuring of sweat secretion and microscopic observation of active sweat glands can be presented the direct information of working of sympathetic nervous system and sudomotor. In the present report, we devised an instrumentation for the estimation of time lag of sweating [correction of seating] after physical stimuli. Variation of gravity during parabolic flights is a kind of physical stimulus. Iwase et al reported the changes of sympathetic outflow to muscle in humans during short periods of microgravity. We studied also the variation of number of active sweat glands under this condition for the evaluation of human sympathetic nervous system.  相似文献   

20.
To examine whether cutaneous active vasodilatation is mediated by sudomotor nerve fibres we recorded cutaneous blood flow and sweat rates continuously with laser-Doppler flowmetry and capacitance hygrometry, respectively, from the dorsal and plantar aspects of the foot in 11 male subjects at varying ambient temperatures (T a) between 22 and 40°C (relative humidity 40%). In a warmer environment (T a 29–40°C), predominant responses of the blood flow curve from the sole of the foot were transient depressions (negative blood flow responses, NBR), whereas those from the dorsal foot were transient increases (positive blood flow responses, PBR). The PBR on the dorsal foot occurred spontaneously or in response to mental or sensory stimuli, and when PBR did not fuse with each other the rate of PBR was linearly related to tympanic temperature. When dorsal foot sweating was continuous, PBR on the dorsal foot almost entirely synchronized with sweat expulsion. When dorsal foot sweating was intermittent PBR sometimes occurred on the dorsal foot without corresponding sweat expulsions, but these PBR showed a complete correspondence with subthreshold sweat expulsion seen on a methacholine-treated area. The amplitude and the duration of PBR showed a significant linear relationship with the amplitude and the duration of the corresponding sweat expulsion. In a thermoneutral or cooler environment (T a 22–29°C), PBR occurred on the sole of the foot when mental or sensory stimuli elicited sweating in that area. Thus, PBR occurred when and where sweating appeared. Atropine failed to abolish PBR on the dorsal foot. Blockade of the peroneal nerve eliminated both PBR and NBR on the dorsal foot. The results indicate that an active vasodilatation mechanism is present on the sole of the foot as well as on the dorsal foot, and thus suggest that active vasodilatation is closely related to sudomotor nerve activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号