首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloudman S91 mouse melanoma cells lose their ability to demonstrate an MSH-induced increase in tyrosinase activity as cell density increases. This loss in hormone responsiveness occurs before confluency is reached and cannot be reversed by exposure of cells to increasing concentrations of MSH. The failure of high-density cultures to respond to MSH is apparently not the result of an inability of MSH to stimulate cAMP production, since either low- or high-density cultures exposed to MSH demonstrate equivalent increases in intracellular levels of cAMP. Further, neither theophylline (1mM), dibutyryl cyclic AMP (10(-4)M), or prostaglandin E1 (10(-6)M) is effective in stimulating tyrosinase activity in melanoma cells cultured at densities exceeding 6 X 10(4) cells/cm2. This finding suggests that the decay of hormone responsiveness occurs at a cellular site distal to cAMP production. The decrease in tyrosinase stimulation by MSH as cell density increases is also apparently not the result of an increase in activity of any soluble inhibitor of the enzyme, for cytosol preparations from high-density cultures (10(5) cells/cm2) fail to inhibit tyrosinase activity in cell homogenates from low-density cultures treated with MSH.  相似文献   

2.
Results of hemacytometer cell counts and of tyrosinase measurements made by the Pomerantz method demonstrate that imidazole added to the medium of cultured B16 mouse melanoma cells can stimulate tyrosinase specific activity and inhibit cell division. These effects are greater than with adenosine 3',5' cyclic monophosphate (cAMP) or the cAMP-phosphodiesterase inhibitor theophylline. The effects of imidazole on cell division and tyrosinase are enhanced by theophylline and antagonized by cAMP. Cyclic AMP-phosphodiesterase activity in cell-free extracts can be inhibited by theophylline and stimulated by imidazole. However, imidazole does not affect cAMP-phosphodiesterase specific activity in vivo, nor does it affect intracellular cAMP concentrations as determined by competitive protein-binding assays. In contrast, the specific activity of cAMP-phosphodiesterase in vivo is stimulated by cAMP and theophylline, supporting the hypothesis that cAMP and agents which increase intracellular cAMP concentrations induce the synthesis of cAMP-phosphodiesterase. Studies with actinomycin-D and cycloheximide support the hypothesis that cAMP can also mediate posttranslational activation of tyrosinase. Similar experiments suggest that imidazole, or a derivative thereof, can induce the synthesis of tyrosinase at the pretranslational level of control. We hypothesize that this type of regulation (pretranslational) by imidazole may define a role for the concept of "Metabolite Gene Regulation" (MGR), in mammalian cells.  相似文献   

3.
The acute in vitro actions of two potent melanocytolytic agents, hydroquinone (HQ) and beta-mercaptoethanolamine (MEA), were determined in the B-16, Cloudman S-91 and Harding-Passey (HP) murine melanomas grown in vivo. Drug treated melanoma dice (5--480 min) were analyzed for tyrosinase activity and cyclic nucleotide levels (cAMP, cGMP). HQ and MEA effects on tyrosinase activity are complex and vary with tumor type, duration of treatment and agent tested. MEA or HQ inhibited B-16 tyrosinase activity. With combined drug therapy, low concentrations of MEA plus HQ stimulate B-16 tyrosinase activity while high concentrations of the drugs have little effect on enzymatic activity. MEA depresses tyrosinase activity while HQ elevates enzymatic activity in the S-19 melanoma. Both high and low concentrations of the combined drugs (MEA plus HQ) elicit the same response, stimulation at 10 min followed by continued depression of tyrosinase activity for the remainder of the 4 h study period. MEA initially stimulates HP tyrosinase activity followed by depression of enzymic activity. In contrast, HQ initially depresses HP tyrosinase activity followed by stimulation of enzyme activity. In combination the drugs inhibit HP tyrosinase activity. The effects of MEA and/or HQ on murine melanoma cyclic nucleotide levels are equally complex. MEA or HQ elevate cAMP and cGMP levels in all three tumors with the exception of S-91 cGMP levels which are not altered. In combination the drugs increase cyclic nucleotide levels in each of the three tumor types but at different times. No correlation is present between cyclic nucleotide levels and tyrosinase activity. Thus, the action of increased cyclic nucleotide levels in melanogenesis can not be separated from the direct actions of MEA and HQ upon melanogenesis. The divergent effects of MEA and/or HQ on tyrosinase activity and cyclic nucleotide levels in these melanomas are not correlated with the known in vivo melanocytolytic activity of these drugs. Thus, these parameters appear to be inadequate indicators of melanoma cell viability in chemotherapeutic screening of drugs effective in destroying malignant melanoma.  相似文献   

4.
A variant of B-16 F1 mouse melanoma was selected for its ability to survive and replicate in the presence of melanocyte-stimulating hormone (MSH). Although the variant (MR-4) was completely resistant to growth inhibition by MSH, cyclic AMP was still able to block cell replication. Tyrosinase activity in MR-4 cells was considerably lower than in B-16 F1 cells. MSH induced a twofold to three-fold increase in tyrosinase activity in both cell types, but the absolute activity in MR-4 remained significantly less than in the parental cells. MR-4 cells were also found to have a markedly depressed cyclic AMP-dependent protein kinase activity relative to B-16 F1 cells. The protein kinase from both cell types was stimulated by cyclic AMP, but the level of MR-4 kinase activity at maximal cyclic AMP concentrations remained considerably lower than B-16 F1 kinase activity under the same conditions. In both cell types adenylate cyclase activity was markedly stimulated by MSH. When equal numbers of viable F1 and MR-4 cells were injected subcutaneously into C57/B1 mice, the MR-4 cells formed tumors earlier and killed the host sooner than the parental F1 cells. We conclude that the biochemical alteration which allows MR-4 cells to replicate in the presence of MSH is a low level of tyrosinase activity, which in turn may be the result of low cyclic AMP-dependent protein kinase activity.  相似文献   

5.
Tyrosinase activity in primary cell culture of amelanotic melanoma cells   总被引:1,自引:0,他引:1  
After transfer of the Ab amelanotic melanoma cells from in vivo to in vitro growth conditions tyrosinase activity in their soluble fraction rapidly increased. This increase lasted to the middle of the logarithmic phase of growth and was followed by a decrease of tyrosinase activity, which was accompanied by accumulation of melanin in the cells. Calf serum stimulated simultaneously tyrosinase activity, melanin synthesis, and proliferation of the melanoma cells. Acrylamide-gel electrophoresis patterns of soluble tyrosinase from the Ab melanoma cells cultured in vitro consisted of two bands, similarly as soluble tyrosinase from the Ma melanotic melanoma cells freshly isolated from solid tumors.  相似文献   

6.
MSH and cholera toxin increase intracellular levels of cyclic AMP (cAMP) and tyrosinase activity in cultivated mouse melanoma cells in the presence of cytochalasin B (CB) at a concentration sufficient to prevent pinocytosis and cytokinesis. The data suggest that MSH and cholera toxin exert their effects without entering the cell.  相似文献   

7.
In vitro melanocyte-stimulating hormone (MSH) stimulates melanogenesis in some, but not all, melanocytes and melanoma cells. In an attempt to explain this variation in response to alpha MSH, we examined cyclic adenosine monophosphate (cAMP) accumulation, tyrosinase activity, and melanin production in primary (1 degree) murine B16 melanoma cells and in two B16 cell lines (B16 F1 and B16 F10) that are known to respond to alpha MSH. In vivo all three B16 melanoma cell types produced pigmented tumours. In vitro alpha MSH increased tyrosinase activity and melanin content in the F1 and F10 cells but not in the B16 1 degree cells. alpha MSH, however, increased cAMP production in all three cell types, confirming that the inability of B16 1 degree cells to produce melanin in response to alpha MSH is not due to a lack of alpha MSH receptors or cAMP response to alpha MSH. Further, we present evidence for a separate pathway of melanogenesis that is independent of cAMP as calmodulin antagonists, which do not elevate cAMP, increased tyrosinase activity, and melanin production in both 1 degree and F1 cells.  相似文献   

8.
In vitro melanocyte-stimulating hormone (MSH) stimulates melanogenesis in some, but not all, melanocytes and melanoma cells. In an attempt to explain this variation in response to αMSH, we examined cyclic adenosine monophosphate (cAMP) accumulation, tyrosinase activity, and melanin production in primary (1°) murine B16 melanoma cells and in two B16 cell lines (B16 F1 and B16 F10) that are known to respond to αMSH. In vivo all three B16 melanoma cell types produced pigmented tumours. In vitro αMSH increased tyrosinase activity and melanin content in the F1 and F10 cells but not in the B16 1° cells. αMSH, however, increased cAMP production in all three cell types, confirming that the inability of B16 1° cells to produce melanin in response to αMSH is not due to a lack of αMSH receptors or cAMP response to αMSH. Further, we present evidence for a separate pathway of melanogenesis that is independent of cAMP as calmodulin antagonists, which do not elevate cAMP, increased tyrosinase activity, and melanin production in both 1° and F1 cells.  相似文献   

9.
目的 :探讨驱虫斑鸠菊体外对酪氨酸酶活性影响 ,以及对小鼠B - 16黑素瘤细胞株细胞增殖、黑素合成以及细胞内酪氨酸酶的作用。方法 :利用四甲基偶氮唑蓝 (MTT)比色法测定药物对细胞增殖的影响 ;采用酶学方法研究药物对酪氨酸酶活性的影响 ;470nm比色法测定黑素含量。结果驱虫斑鸠菊体外可激活酪氨酸酶活性 ,增强B - 16鼠黑素瘤细胞增殖 ,提高酪氨酸酶和黑色素合成能力 ;对整体动物黑素细胞具有促进合成和分泌作用。结论在白癜风的治疗中 ,驱虫斑鸠菊可增强酪氨酸酶活性 ,进而促进黑素合成  相似文献   

10.
A widely accepted notion is that an increasing cellular cyclic AMP (cAMP) concentration is prerequisite for increasing tyrosinase activity and melanin synthesis and for regulating proliferation of pigment cells. alpha-Melanocyte stimulating hormone (alpha-MSH) increases cAMP and tyrosinase activity in Cloudman melanoma cells. Prostaglandins (PGs) E1 and E2 increase melanoma cell tyrosinase activity and inhibit proliferation. Both PGs, but not alpha-MSH, block the progression of Cloudman melanoma cells from G2 phase of the cell cycle into M or G1. Only PGE1 and not PGE2 causes an elevation of cellular cAMP concentrations. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine (DDA) at 5 x 10(-4) M effectively blocks the increased cAMP synthesis by cells treated with 10 micrograms/ml PGE1. The addition of DDA, however, enhances the melanogenic response of melanoma cells to 10 micrograms/ml PGE1 or PGE2, 10(-7) M alpha-MSH, 10(-4) M isobutylmethylxanthine, 10(-4) M dibutyryl cyclic AMP. DDA also augments the effects of PGE1 or PGE2 on the melanoma cell cycle. Moreover, when DDA is added concomitantly with alpha-MSH, more cells are recruited into G2 than observed in untreated controls. Neither alpha-MSH nor DDA alone has any effect on the cell cycle. These findings undermine the role of cAMP in the melanogenic process and suggest that blocking melanoma cells in G2 may be required for the remarkable stimulation of tyrosinase activity observed with PGE1 or PGE2 alone or in combination with DDA. The observed block in G2 may be essential for the synthesis of sufficient mRNA, which is required for stimulation of tyrosinase activity.  相似文献   

11.
The rationale for melanoma specific dihydroxybenzene containing antitumor agents is based in part upon the ability of the enzyme tyrosinase to oxidize these pro drugs to toxic intermediates. In situ tyrosinase activity was demonstrated to be affected by both cell density and time from plating in pigmented melanoma cells. Phenylthiourea, which completely inhibited tyrosinase activity with minimal cytotoxicity was found to block the growth inhibitory activity of the antitumor dopamine analog 3,4-dihydroxybenzylamine (3,4-DHBA) (NSC 263475). The antioxidant dithioerythritol was also found to inhibit tyrosinase activity and to block the growth inhibitory effects of 3,4-DHBA in pigmented melanoma cell lines. Buthionine sulfoximine (BSO) was shown to be cytotoxic to melanoma cells and its growth inhibitory effects appears to correlate with tyrosinase levels. Furthermore, BSO was shown to potentiate the growth inhibitory effects of 3,4-DHBA on marginally pigmented human melanoma cell lines.  相似文献   

12.
Calcium ionophore A23187 lowers basal levels of tyrosinase and inhibits the MSH-induced increase in tyrosinase in Cloudman S-91 mouse melanoma cell cultures. Ionophore at a concentration of 10(-6) g/ml causes a 50% reduction in basal levels of tyrosinase and inhibits the MSH stimulated level of enzyme. Ionophore A23187 also inhibits the PGE1 mediated stimulation of tyrosinase, as well as the rise in enzyme activity observed in cells exposed to either theophylline (1 mM) or dbcAMP (10(-4)M). Ionophore does not affect basal levels of cyclic AMP nor the elevated levels produced by either MSH or PGE1, suggesting then, that the antagonistic activity of A23187 is localized to a point in the pathway of tyrosinase activation distal to the formation of cAMP. Ionophore causes a rapid and marked (greater than 50%) inhibition of cellular protein synthesis and it is possible that this calcium mobilizing compound may exert its inhibitory effects on tyrosinase activity by causing a general reduction in cellular translation. Since the inhibition of protein synthesis occurs in cells exposed to ionophore in either the presence or absence of calcium in the medium, it seems, likely that the ionophore may exert its effects by causing the release of calcium from intracellular sites.  相似文献   

13.
14.
15.
We have studied the effects of theophylline treatment on pigmentation characteristics and growth of two B16 melanoma cell lines, HFH-18 and P/140. Cell counts of control and theophylline-treated cultures confirmed that the drug inhibits cell growth. Light and electron microscope cytochemistry with the L-dopa reaction indicated that the two cell lines differ in their ability to transfer Golgi-associated tyrosinase to developing premelanosomes. The results of these experiments, considered with results of electrophoretic analyses and activity measurements by the Pomerantz method, also provide evidence that increased tyrosinase synthesis occurs in response to theophylline treatment. In addition, results indicate that theophylline induces changes in the rate of synthetic or degradative posttranslational modification of tyrosinase. Measurements of intracellular cyclic AMP levels by radioimmunoassay in control cultures and in theophylline- and alpha-MSH-treated cultures were made. Although the hormone induced spectacular increases in cyclic AMP levels, theophylline produced no detectable change. These results indicate that theophylline differs from alpha-MSH because theophylline-induced changes in pigmentation may not require the participation of intracellular cyclic AMP.  相似文献   

16.
The involvement of adenosine 3':5'-monophosphate (cAMP) in the regulation of the cell cycle was studied by determining intracellular fluctuations in cAMP levels in synchronized HeLa cells and by testing the effects of experimentally altered levels on cell cycle traverse. Cyclic AMP levels were lowest during mitosis and were highest during late G-1 or early S phase. These findings were supported by results obtained when cells were accumulated at these points with Colcemid or high levels of thymidine. Additional fluctuations in cAMP levels were observed during S phase. Two specific effects of cAMP on cell cycle traverse were found. Elevation of cAMP levels in S phase or G-2 caused arrest of cells in G-2 for as long as 10 h and lengthened M. However, once cells reached metaphase, elevation of cAMP accelerated the completion of mitosis. Stimulation of mitosis was also observed after addition of CaCl2. The specificity of the effects of cAMP was verified by demonstrating that: (a) intracellular cAMP was increased after exposure to methylisobutylxanthine (MIX) before any observed effects on cycle traverse; (b) submaximal concentrations of MIX potentiated the effects of isoproterenol; and (c) effects of MIX and isoproterenol were mimicked by 8-Br-cAMP. MIX at high concentrations inhibited G-1 traverse, but this effect did not appear to be mediated by cAMP. Isoproterenol slightly stimulated G-1 traverse and partially prevented the MIX-induced delay. Moreover, low concentrations of 8-Br-cAMP (0.10-100 muM) stimulated G-1 traverse, whereas high concentrations (1 mM) inhibited. Both of these effects were also observed with the control, Br-5'-AMP, at 10-fold lower concentrations.  相似文献   

17.
Calcium ionophore A23187 lowers basal levels of tyrosinase and inhibits the MSH-induced increase in tyrosinase in Cloudman S-91 mouse melanoma cell cultures. lonophore at a concentration of 10–6 g/ml causes a 50% reduction in basal levels of tyrosinase and inhibits the MSH stimulated level of enzyme. lonophore A23187 also inhibits the PGEi mediated stimulation of tyrosinase, as well as the rise in enzyme activity observed in cells exposed to either theophylline (1 mM) or dbcAMP (10–4M). lonophore does not affect basal levels of cyclic AMP nor the elevated levels produced by either MSH or PGEi, suggesting then, that the antagonistic activity of A23187 is localized to a point in the pathway of tyrosinase activation distal to the formation of cAMP. lonophore causes a rapid and marked (> 50%) inhibition of cellular protein synthesis and it is possible that this calcium mobilizing compound may exert its inhibitory effects on tyrosinase activity by causing a general reduction in cellular translation. Since the inhibition of protein synthesis occurs in cells exposed to ionophore in either the presence or absence of calcium in the medium, it seems, likely that the ionophore may exert its effects by causing the release of calcium from intracellular sites.  相似文献   

18.
The intracellular level of cGMP was independent of the rate of cell division in cells derived from virally infected brain tissue. The phosphodiesterase inhibitor R07-2956 (4-dimethoxybenzyl-2-imidazolidinone) increased the intracellular level of cGMP in virally infected brain cells, but it did not effect the level of cAMP. There was no correction between the increase in cGMP levels following addition of R07-2956 and changes in mitotic activity in the brain cell cultures. Experimental manipulations which increased the cAMP level were accompanied by a decreased mitotic rate indicating there was a correlation between mitotic activity and the level of cAMP in the same cells. Raising the intracellular level of cAMP by exogenous db-cAMP or cAMP or the use of other phosphodiesterase inhibitors routinely increased the level of cGMP as well. Conversely increasing the intracellular cGMP level by adding the exogenous cGMP increased the level of both cGMP and cAMP.A tissue culture system was used with the cell line derived from viral infected human brain tissue originally obtained from a patient with subacute sclerosing panencephalitis (SSPE). The intracellular levels of cAMP and cGMP were monitored by radioimmunoassay following manipulation of the system by addition of exogenous cGMP (0.05 mM), addition of exogenous db-cAMP (0.5 mM), or cAMP (0.5 mM) and the use of phosphodiesterase inhibitors: theophylline (1.0 mM), papaverine (50 μg/ml), 4-3-butoxy-4-methoxy benzyl-2-imidozalidinone (R020-1724) and R07-2956. Cell division was monitored in treated and non-treated cultures at 24 h intervals by analyzing the cell number and mitotic index.High levels of cGMP were found in cells which were not actively dividing but high levels were just as apt to be present in dividing cells. There was an inverse relationship between cell division and the level of cAMP.  相似文献   

19.
Cholera toxin was used in an attempt to inhibit epidermal growth factor stimulated 3T3 cell division. Instead, cholera toxin alone at low concentrations (10(-10) M), was able to stimulate cell division and could augment EGF stimulated cell division. The mitogenic effect of cholera toxin can occur despite a dramatic increase in the intracellular levels of cAMP in 3T3 cells. Cholera toxin stimulated mitogenesis could not be mimicked by choleragenoid, the binding but inactive subunit of cholera toxin, or by other agents which elevate cAMP levels in 3T3 cells.  相似文献   

20.
B16/F10 murine melanoma cells were grown for 24 and 36 h in Dulbecco's modified Eagle medium in presence of 10-20 mM trisodium citrate. The intracellular melanin concentration and the melanin secreted in the extracellular medium was estimated. It is observed that 20 mM citrate stimulates extracellular melanin secretion in B16/F10 melanoma cells by 200% at 36 h treatment. The intracellular melanin content increased by 90%. This stimulatory effect of citrate was totally abolished when these cells were grown in presence of 1 mM phenyl thiourea, a specific inhibitor of tyrosinase activity. Citrate (0.1-5 mM) had no effect on dopa oxidase activity either at pH 5.0 or at pH 6.8. There was no increase in the tyrosinase specific activity in presence of citrate. The increased melanin synthesis was shown to be due to stimulation of cellular tyrosine hydroxylase activity by citrate. It has been suggested that enhanced melanin synthesis results in an increased production of metabolites that are toxic to the growth of melanoma cells. We have studied the effect of citrate on cellular proliferation. Following 24 and 36 h treatment with citrate, the cells exhibited a dose-dependent decrease in proliferation. In presence of 20 mM citrate the cell number was only up to 50% of the control cultures after 36 h of incubation. The growth retardation was not due to cytotoxicity. Citrate, a natural metabolite, is a unique molecule which may be involved in the regulation of melanin biosynthetic pathway, since it enhances melanogenesis by increasing the hydroxylase activity of tyrosinase which is the regulatory enzyme of this pathway. These observations add further support to the critical role of intramelanosomal pH in regulation of melanogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号