首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

In the years 2000 and 2002, the German Environment Agency in Berlin (UBA) published the results of a comprehensive LCA study on beverage containers comprising aluminium cans with volumes of 330 ml and 500 ml. Starting with the aluminium can scenarios and the respective results obtained during the UBA study, additional analyses were performed by IFEU in 2003, a German consultant having been a member of the project team working on the UBA study. The objective was to examine the influence of selected parameters on the LCA profile of carbonated soft drink containers. Data and method were in complete analogy with the LCI and LCA part of the UBA study.

Materials

In 2006, the aluminium industry commissioned a study on further influential factors that help determine the sale of certain types of beer, studying the effects of two selected parameter settings on the comparative results of the aluminium can against the refillable glass bottle. In this scenario, special attention was given to two influential factors, the distribution distance—distinguished by regional and nationwide distribution—and trippage rate.

Results and discussion

The results of the initial LCA from the years 2000 and 2002 showed, for the examined parameters container weight, rate of post-consumer recovery of used containers, degree of recycled content and quality of the recycling routes, that each had a considerable influence on the environmental impact profile of the aluminium can within the given framework. Can weight and recycling rate were sensitive factors in the impact categories of climate change, fossil resources, summer smog (POCP), acidification and terrestrial eutrophication. Can volume affected virtually all impact categories examined.

Conclusions

By now, individual improvement options have already been put into practice in Germany. The environmental profile of the average 330 ml aluminium can on the German market can be expected to be ahead of that of the aluminium can at the time of the UBA study. The introduction of a 500-ml can on the market denotes a fundamental step forward in improving LCA results of the aluminium can as a container for beverages.
  相似文献   

2.

Background, Aim and Scope  

By using recycled aluminium or by disposing used aluminium products for recycling, it is normal LCA practice to give a credit for the avoided production of primary or recycled aluminium. Lately, consequential approaches have been suggested to qualify and quantify this credit in terms of market mechanisms. Depending on supply, demand and price elasticity of primary products and scrap products, a mixed share of primary and recycled material may be credited. Aluminium, having high energy consumption for its primary production and low energy consumption for recycling, is very sensitive concerning whether production of primary or recycled aluminium is avoided. This paper includes presentations of aluminium products which are typically made from primary and from recycled aluminium. This is essential concerning which production may be avoided. Examples of market mechanism parameters of aluminium for consequential LCA are given.  相似文献   

3.

Background, aim, and scope  

This paper summarises the critical review process according to ISO 14040/44 performed for the European Aluminium Association (EAA), Brussels. Scope of the review was a life cycle inventory (LCI) project, aiming at providing the life cycle assessment (LCA) community with reliable generic data relevant for the European aluminium market, including the production of aluminium ingot either from primary aluminium or from recycled aluminium and the fabrication of semi-finished products, i.e. sheet, foil or extrusion fabrication from aluminium ingots.  相似文献   

4.

Purpose  

Many life cycle assessment (LCA) studies do not adequately address the actual lifetime of buildings and building products, but rather assume a typical value. The goal of this study was to determine the impact of lifetime on residential building LCA results. Including accurate lifetime data into LCA allows a better understanding of a product’s environmental impact that would ultimately enhance the accuracy of LCA results.  相似文献   

5.

Purpose  

This paper investigates different methodologies of handling co-products in life cycle assessment (LCA) or carbon footprint (CF) studies. Co-product handling can have a significant effect on final LCA/CF results, and although there are guidelines on the preferred order for different methods for handling co-products, no agreed understanding on applicable methods is available. In the present study, the greenhouse gases (GHG) associated with the production of 1 kg of energy-corrected milk (ECM) at farm gate is investigated considering co-product handling.  相似文献   

6.

Background, aim and scope  

As a food exporting nation, New Zealand recognises that the Global Warming Potential (GWP) impact of agriculture has become important to food customers. Food production policy and industry analysts make GWP decisions based on greenhouse gas inventory and life cycle assessment (LCA) results. For decision making, the level of confidence associated with information is important. However, treatment of uncertainty has been problematic in LCA, especially in agricultural systems. In this paper, the GWP of 1 kg of milk was used as a case study to test the feasibility of quantifying uncertainties by Monte Carlo simulation in an LCA applied to an agriculture product. The study also contributes to the development of good practice and has implications for the incorporation of uncertainties into decision making.  相似文献   

7.

Purpose  

When performing a life cycle assessment (LCA), the LCA practitioner faces the need to express the characterized results in a form suitable for the final interpretation. This can be done using normalization against some common reference impact—the normalization references—which require regular updates. The study presents updated sets of normalization inventories, normalization references for the EDIP97/EDIP2003 methodology and guidance on their consistent use in practice.  相似文献   

8.

Purpose  

The purpose of this study has been to investigate the effect of different allocation methods on life cycle assessment (LCA) results of products derived from line-caught cod and the consequences of applying these methods considering the main aims of this case study. These aims were for internal improvement work and communication of results to the market.  相似文献   

9.

Purpose

The main goal of the paper is to carry out the first implementation of sustainability assessment of the assembly step of photovoltaic (PV) modules production by Life Cycle Sustainability Assessment (LCSA) and the development of the Life Cycle Sustainability Dashboard (LCSD), in order to compare LCSA results of different PV modules. The applicability and practicability of the LCSD is reported thanks to a case study. The results show that LCSA can be considered a valuable tool to support decision-making processes that involve different stakeholders with different knowledge and background.

Method

The sustainability performance of the production step of Italian and German polycrystalline silicon modules is assessed using the LCSD. The LCSD is an application oriented to the presentation of an LCSA study. LCSA comprises life cycle assessment (LCA), life cycle costing and social LCA (S-LCA). The primary data collected for the German module are related to two different years, and this led to the evaluation of three different scenarios: a German 2008 module, a German 2009 module, and an Italian 2008 module.

Results and discussion

According to the LCA results based on Ecoindicator 99, the German module for example has lower values of land use [1.77 potential disappeared fractions (PDF) m2/year] and acidification (3.61 PDF m2/year) than the Italian one (land use 1.99 PDF m2/year, acidification 3.83 PDF m2/year). However, the German module has higher global warming potential [4.5E?C05 disability-adjusted life years (DALY)] than the Italian one [3.00E?05 DALY]. The economic costs of the German module are lower than the Italian one, e.g. the cost of electricity per FU for the German module is 0.12??/m2 compared to the Italian 0.85??/m2. The S-LCA results show significant differences between German module 2008 and 2009 that represent respectively the best and the worst overall social performances of the three considered scenarios compared by LCSD. The aggregate LCSD results show that the German module 2008 has the best overall sustainability performance and a score of 665 points out of 1,000 (and a colour scale of light green). The Italian module 2008 has the worst overall sustainability performance with a score of 404 points, while the German module 2009 is in the middle with 524 points.

Conclusions

The LCSA and LCSD methodologies represent an applicable framework as a tool for supporting decision-making processes which consider sustainable production and consumption. However, there are still challenges for a meaningful application, particularly the questions of the selection of social LCA indicators and how to weigh sets for the LCSD.  相似文献   

10.

Purpose  

Service life of building products has an important influence on life cycle assessment (LCA) results of buildings. The goal of this study was to propose a systematic approach to estimate service life of building products by including both technical and social factors.  相似文献   

11.

Purpose  

The paper presents a discussion on the possibilities of using LCA in identification and assessment of environmental aspects in environmental management systems based on the requirements of the international ISO14001 standard and the European Union EMAS regulation. Some modifications of LCA methodology are proposed in Part 1 while the results of a review of environmental aspects for 36 organisations with implemented EMS are presented in Part 2 of the article.  相似文献   

12.

Background, aim, and scope  

One barrier to the further implementation of LCA as a quantitative decision-support tool is the uncertainty created by the diversity of available analytical approaches. This paper compares conventional (‘process analysis’) and alternative (‘input–output analysis’) approaches to LCA, and presents a hybrid LCA model for Australia that overcomes the methodological limitations of process and input–output analysis and enables a comparison between the results achieved using each method. A case study from the water industry illustrates this comparison.  相似文献   

13.

Purpose  

Geospatial details about land use are necessary to assess its potential impacts on biodiversity. Geographic information systems (GIS) are adept at modeling land use in a spatially explicit manner, while life cycle assessment (LCA) does not conventionally utilize geospatial information. This study presents a proof-of-concept approach for coupling GIS and LCA for biodiversity assessments of land use and applies it to a case study of ethanol production from agricultural crops in California.  相似文献   

14.

Background, aim and scope  

Life cycle assessment (LCA) enables the objective assessment of global environmental burdens associated with the life cycle of a product or a production system. One of the main weaknesses of LCA is that, as yet, there is no scientific agreement on the assessment methods for land-use related impacts, which results in either the exclusion or the lack of assessment of local environmental impacts related to land use. The inclusion of the desertification impact in LCA studies of any human activity can be important in high-desertification risk regions.  相似文献   

15.
Coupling GIS and LCA for biodiversity assessments of land use   总被引:1,自引:0,他引:1  

Purpose  

Geospatial details about land use are necessary to assess its potential impacts on biodiversity. Geographic information systems (GIS) are adept at modeling land use in a spatially explicit manner, while life cycle assessment (LCA) does not conventionally utilize geospatial information. This study presents a proof-of-concept approach for coupling GIS and LCA for biodiversity assessments of land use and applies it to a case study of ethanol production from agricultural crops in California.  相似文献   

16.

Purpose  

At the parameter level, data inaccuracy, data gaps, and the use of unrepresentative data have been recognized as sources of uncertainty in life cycle assessment (LCA). In many LCA uncertainty studies, parameter distributions were created based on the measured variability or on “rules of thumb,” but the possible existence of correlation was not explored. The correlation between parameters may alter the sampling space and, thus, yield unrepresentative results. The objective of this article is to describe the effect of correlation between input parameters (and the final product) on the outcome of an uncertainty analysis, carried out for an LCA of an agricultural product.  相似文献   

17.
18.

Purpose  

The paper presents a discussion on the possibilities of using life cycle assessment (LCA) in identification and assessment of environmental aspects in environmental management systems based on the requirements of the international ISO14001 standard and the European Union EMAS regulation. Some modifications of LCA methodology are proposed in part 1, while the results of a review of environmental aspects for 36 organisations with implemented environmental management systems (EMS) are presented in part 2 of the article.  相似文献   

19.
Sensitivity coefficients for matrix-based LCA   总被引:2,自引:0,他引:2  

Background, aim, and scope  

Matrix-based life cycle assessment (LCA) is part of the standard ingredients of modern LCA tools. An important aspect of matrix-based LCA that is straightforward to carry out, but that requires a careful mathematical handling, is the inclusion of sensitivity coefficients based on differentiating the matrix-based formulas.  相似文献   

20.

Purpose  

A workshop was convened on life cycle assessment (LCA) applied to pavement. The workshop’s primary goals were to establish common practices for conducting LCAs for pavements. In general, pavement LCA has been implemented without clear guidelines for modeling assumptions and reporting. This shortcoming has led to challenges in interpreting and comparing pavement LCA outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号