首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Programmed cell death is an integral and ubiquitous phenomenon of development that is responsible for the reduction of wing size in female moths of Orgyia leucostigma (Lymantriidae). Throughout larval and pupal life, cells of the wing epithelium proliferate and interact to form normal imaginal discs and pupal wings in both sexes. But at the onset of adult development, most cells in female O. leucostigma wings degenerate over a brief, 2-day period. Lysosomes and autophagic vacuoles appear in cells of the wing epithelium shortly after it retracts from the pupal cuticle. Hemocytes actively participate in removing the resulting cellular debris. By contrast, epithelial cells in wings of developing adult males of O. leucostigma do not undergo massive cell death. Wing epithelium of female pupae transferred to male pupal hosts behaves autonomously in this foreign environment. By pupation, cells of the female wing apparently are committed to self-destruct even in a male pupal environment. Normal interactions among epithelial cells within the plane of a wing monolayer as well as between the upper and lower monolayers of the wing are disrupted in female O. leucostigma by massive cell degeneration. Despite this disruption, the remaining cells of the wing contribute to the formation of a diminutive, but reasonably proportioned, adult wing with scales and veins.  相似文献   

2.
The epithelium of larval midgut of the greater wax moth, Galleria mellonela, was replaced during the larval-pupal moult. The development of this moth was tentatively divided into 11 stages, from the full-grown larva of last instar to the 4-day-old pupa. The midgut at each stage was observed for (1) overall structure, (2) the position of goblet cells, and (3) the appearance of the yellow body. Light microscopy revealed that cell death in the midgut began in a cocoon-spinning larva (stage II), when pigments in the stemmata started to migrate. Before drastic remodeling started to occur, cytoplasmic projections in the goblet cavities were transformed. The larval midgut changed markedly at stage III, when the pigments left the stemmata. The epithelium of the larval midgut dropped as a whole into the lumen, transforming into the yellow body. Simultaneously, a pupal midgut epithelium developed. Electron microscopy of the columnar cells of a stage III larva showed that microvilli and mitochondria looked normal even though the nucleus with condensed heterochromatin resembled an apoptotic nucleus of vertebrate and higher plant cells. Caspase-3-like protease activity was restricted to the larval midgut and increased in parallel with the formation of the yellow body. The results indicate that the replacement of the larval midgut is facilitated by a typical apoptotic process.  相似文献   

3.
The Drosophila larval and adult midguts are derived from two populations of endodermal progenitors that separate from each other in the early embryo. As larval midgut cells differentiate into an epithelial layer, adult midgut progenitors (AMPs) remain as small clusters of proliferating, undifferentiated cells attached to the basal surface of the larval gut epithelium. During the first few hours of metamorphosis, AMPs merge into a continuous epithelial tube that overgrows the larval layer and differentiates into the adult midgut; at the same time, the larval midgut degenerates. As shown in this paper, there is a second, transient pupal midgut that develops from the AMPs at the beginning of metamorphosis and that intercalates between the adult and larval midgut epithelia. Cells of the transient pupal midgut form a multilayered tube that exhibits signs of differentiation, in the form of septate junctions and rudimentary apical microvilli. Some cells of the pupal midgut develop as endocrine cells. The pupal midgut remains closely attached to the degenerating larval midgut cells. Along with these cells, pupal midgut cells are sequestered into the lumen where they form the compact “yellow body.” The formation of a pupal midgut has been reported from several other species and may represent a general feature of intestinal metamorphosis in insects.  相似文献   

4.
To study midgut degradation and programmed cell death, we performed methyl green-pyronin staining and Giemsa staining of the midgut of silkworms during metamorphosis. Midgut epithelial cells underwent pyknosis and cytoplasmic shrinkage on the second day of spinning. In the prepupal stage, all midgut epithelial cells desquamated into the midgut lumen, rapidly forming apoptotic bodies. The number of apoptotic bodies in the midgut decreased rapidly from the prepupal stage to the third day of the pupal stage. DNA fragmentation at the time of apoptotic body formation was confirmed by the comet assay. In the midgut lumen from the prepupal stage to the first through third days of the pupal stage in which apoptotic bodies were observed, granular cells were present. Their morphology was similar to that in the body fluid and, during the pupal stage, intracellular granules increased in size and number with time, giving the appearance of a foamy cell. In this stage, numerous granular cells were observed under the basement membrane of the midgut, and phagocytosed apoptotic bodies were seen within granular cells in the midgut lumen. Granular cells may be actively involved in the clearance of apoptotic bodies from the midgut during larval-pupal ecdysis.  相似文献   

5.
The degenerative processes in the larval small intestine of Xenopus laevis tadpoles during spontaneous metamorphosis and during thyroid hormone-induced metamorphosis in vitro were examined by electron microscopy. Around the beginning of spontaneous metamorphic climax (stages 59-61), both apoptotic bodies derived from larval epithelial cells and intraepithelial macrophage-like cells suddenly increase in number. The macrophage-like cells become rounded and enlarged because of numerous vacuoles containing the apoptotic bodies. Mitotic profiles of the macrophage-like cells, however, are localized in the connective tissue where different developmental stages of macrophage-like cells are present. After stage 62, the intraepithelial macrophage-like cells decrease in number, while large macrophage-like cells which include the apoptotic bodies and retain intact cell membranes and nuclei appear in the lumen. Degenerative changes similar to those during spontaneous metamorphosis described above could be reproduced in vitro. In tissue fragments isolated from the small intestine of stage 57 tadpoles and cultured in the presence of thyroid hormone, the number of intraepithelial macrophage-like cells reaches its maximum around the 3rd day of cultivation when the larval epithelial cells most rapidly decrease in number. These results suggest that the rapid degeneration of larval epithelial cells occurs not only because of apoptosis of the epithelial cells themselves but also from heterolysis by macrophages. The macrophages probably originate in the connective tissue, actively proliferate, migrate into the larval epithelium around the beginning of metamorphic climax, and are finally extruded into the lumen.  相似文献   

6.
The outline of the adult wing of lepidopteran insects (butterflies and moths) emerges as a result of disappearance of a group of cells at the periphery of the pupal wing. Histological observation of the pupal wing of Pieris rapae showed that, just after apolysis of the wing epithelium from the pupal cuticle, there occurs a rapid and localized decrease of the number of cells at the periphery of the wing. This decrease occurs through cell death, which lasts 1–1.5 days at 20°C. Dying cells lose contact with the neighbouring cells and show condensation of chromatin and cytoplasm. They then appear to be phagocytosed by neighbouring epithelial cells or discharged through the basal surface of the epithelium into the lumen within the wing and taken up by phagocytes. Fragmentation of DNA in the nuclei was detected in the dead cells or their debris. These results indicate that programmed cell death in the lepidopteran wing proceeds through a mechanism closely similar to that of apoptosis in the vertebrate.  相似文献   

7.
Prolonged exposure to hyperoxia induces pulmonary epithelial cell death and acute lung injury. Although both apoptotic and nonapoptotic morphologies are observed in hyperoxic animal lungs, nonapoptotic cell death had only been recorded in transformed lung epithelium cultured in hyperoxia. To test whether the nonapoptotic characteristics in hyperoxic animal lungs are direct effects of hyperoxia, the mode of cell death was determined both morphologically and biochemically in human primary lung epithelium exposed to 95% O(2). In contrast to characteristics observed in apoptotic cells, hyperoxia induced swelling of nuclei and an increase in cell size, with no evidence for any augmentation in the levels of either caspase-3 activity or annexin V incorporation. These data suggest that hyperoxia can directly induce nonapoptotic cell death in primary lung epithelium. Although hyperoxia-induced nonapoptotic cell death was associated with NF-kappaB activation, it is unknown whether NF-kappaB activation plays any causal role in nonapoptotic cell death. This study shows that inhibition of NF-kappaB activation can accelerate hyperoxia-induced epithelial cell death in both primary and transformed lung epithelium. Corresponding to the reduced cell survival in hyperoxia, the levels of MnSOD were also low in NF-kappaB-deficient cells. These results demonstrate that NF-kappaB protects lung epithelial cells from hyperoxia-induced nonapoptotic cell death.  相似文献   

8.
Successive tracheal cuticles of the dorsal longitudinal trunks are studied with the electron microscope. Minor differences seen at the light microscope level are seen as major qualitative and quantitative ones at the ultrastructural level. The larval and pupal cuticles are secreted by similar epithelial cells; these possess large polytene chromosomes. Cell division and possibly cell replacement occur prior to adult cuticle secretion. The findings are discussed in terms of cell specificity, intra- and inter-cellular pattern formation. This simple epithelium, the individual cells of which are capable of producing different cuticles, is interesting since the system is also shown to be responsive to hormone application.  相似文献   

9.
Programmed cell death (PCD) is crucial in body restructuring during metamorphosis of holometabolous insects (those that have a pupal stage between the final larval and adult stages). Besides apoptosis, an increasing body of evidence indicates that in several insect species programmed autophagy also plays a key role in these developmental processes. We have recently characterized the midgut replacement process in Heliothis virescens larva, during the prepupal phase, responsible for the formation of a new pupal midgut. We found that the elimination of the old larval midgut epithelium is obtained by a combination of apoptotic and autophagic events. In particular, autophagic PCD completely digests decaying tissues, and provides nutrients that are rapidly absorbed by the newly formed epithelium, which is apparently functional at this early stage. The presence of both apoptosis and autophagy in the replacement of midgut cells in Lepidoptera offers the opportunity to investigate the functional peculiarities of these PCD modalities and if they share any molecular mechanism, which may account for possible cross-talk between them.  相似文献   

10.
Drosophila metamorphosis is characterized by the histolysis of larval structures by programmed cell death, which paves the way for the establishment of adult-specific structures under the influence of the steroid hormone ecdysone. Malpighian tubules function as an excretory system and are one of the larval structures that are not destroyed during metamorphosis and are carried over to adulthood. The pupal Malpighian tubules evade destruction in spite of expressing apoptotic proteins, Reaper, Hid, Grim, Dronc and Drice. Here we show that in the Malpighian tubules expression of apoptotic proteins commences right from embryonic development and continues throughout the larval stages. Overexpression of these proteins in the Malpighian tubules causes larval lethality resulting in malformed tubules. The number and regular organization of principal and stellate cells of Malpighian tubules is disturbed, in turn disrupting the physiological functioning of the tubules as well. Strikingly, the localization of beta-tubulin, F-actin and Disclarge (Dlg) is also disrupted. These results suggest that the apoptotic proteins could be having non-apoptotic function in the development of Malpighian tubules.  相似文献   

11.
The lifespan of herbivorous Rana pipiens larvae is ~3 months, while that of carnivorous Ceratophrys ornata larvae is only about 2 weeks. During metamorphic climax, the larval gut shortens dramatically, especially in R. pipiens, and its luminal epithelium is replaced by adult‐type epithelium. To determine when programmed cell death occurs during the metamorphic restructuring of the gut, we prepared cross‐sections of the stomach, small intestine, and large intestine from representative larval stages and from juvenile frogs of both species. The sections were incubated with monoclonal antibody against active caspase‐3, one of the key enzymes in the apoptotic cascade. We observed apoptosis in some luminal epithelial cells in each of the three regions of the larval gastrointestinal tract of both species. However, apoptotic cells appeared earlier in larval stages of R. pipiens than C. ornata and few were seen in juvenile frogs of either species. The results demonstrate the occurrence of apoptosis in the metamorphic remodeling of the gut of both R. pipiens larvae and C. ornata larvae. J. Morphol., 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings.  相似文献   

13.
Previously, we showed that isolated stem cells from midguts of Heliothis virescens can be induced to multiply in response to a multiplication protein (MP) isolated from pupal fat body, or to differentiate to larval types of mature midgut cells in response to either of 4 differentiation factors (MDFs) isolated from larval midgut cell-conditioned medium or pupal hemolymph. In this work, we show that the responses to MDF-2 and MP in H. virescens stem cells decayed at different time intervals, implying that the receptors or response cascades for stem cell differentiation and multiplication may be different. However, the processes appeared to be linked, since conditioned medium and MDF-2 prevented the action of MP on stem cells; MP by itself appeared to repress stem cell differentiation. Epidermal growth factor, retinoic acid, and platelet-derived growth factor induced isolated midgut stem cells of H. virescens and Lymantria dispar to multiply and to differentiate to mature midgut cells characteristic of prepupal, pupal, and adult lepidopteran midgut epithelium, and to squamous-like cells and scales not characteristic of midgut tissue instead of the larval types of mature midgut epithelium induced by the MDFs. Midgut stem cells appear to be multipotent and their various differentiated fates can be influenced by several growth factors.  相似文献   

14.
Although several features of apoptosis and autophagy have been reported in the larval organs of Lepidoptera during metamorphosis, solid experimental evidence for autophagy is still lacking. Moreover, the role of the two processes and the nature of their relationship are still cryptic. In this study, we perform a cellular, biochemical and molecular analysis of the degeneration process that occurs in the larval midgut of Bombyx mori during larval-adult transformation, with the aim to analyze autophagy and apoptosis in cells that die under physiological conditions. We demonstrate that larval midgut degradation is due to the concerted action of the two mechanisms, which occur at different times and have different functions. Autophagy is activated from the wandering stage and reaches a high level of activity during the spinning and prepupal stages, as demonstrated by specific autophagic markers. Our data show that the process of autophagy can recycle molecules from the degenerating cells and supply nutrients to the animal during the non-feeding period. Apoptosis intervenes later. In fact, although genes encoding caspases are transcribed at the end of the larval period, the activity of these proteases is not appreciable until the second day of spinning and apoptotic features are observable from prepupal phase. The abundance of apoptotic features during the pupal phase, when the majority of the cells die, indicates that apoptosis is actually responsible for cell death and for the disappearance of larval midgut cells.  相似文献   

15.
BACKGROUND: Simple epithelia encase developing embryos and organs. Although these epithelia consist of only one or two layers of cells, they must provide tight barriers for the tissues that they envelop. Apoptosis occurring within these simple epithelia could compromise this barrier. How, then, does an epithelium remove apoptotic cells without disrupting its function as a barrier? RESULTS: We show that apoptotic cells are extruded from a simple epithelium by the concerted contraction of their neighbors. A ring of actin and myosin forms both within the apoptotic cell and in the cells surrounding it, and contraction of the ring formed in the live neighbors is required for apoptotic cell extrusion, as injection of a Rho GTPase inhibitor into these cells completely blocks extrusion. Addition of apoptotic MDCK cells to an intact monolayer induces the formation of actin cables in the cells contacted, suggesting that the signal to form the cable comes from the dying cell. The signal is produced very early in the apoptotic process, before procaspase activation, cell shrinkage, or phosphatidylserine exposure. Remarkably, electrical resistance studies show that epithelial barrier function is maintained, even when large numbers of dying cells are being extruded. CONCLUSIONS: We propose that apoptotic cell extrusion is important for the preservation of epithelial barrier function during cell death. Our results suggest that an early signal from the dying cell activates Rho in live neighbors to extrude the apoptotic cell out of the epithelium.  相似文献   

16.
Cdc42 and Rac1 are members of the rho family of small guanosinetriphosphatases and are required for a diverse set of cytoskeleton-membrane interactions in different cell types. Here we show that these two proteins contribute differently to the organization of epithelial cells in the Drosophila wing imaginal disc. Drac1 is required to assemble actin at adherens junctions. Failure of adherens junction actin assembly in Drac1 dominant-negative mutants is associated with increased cell death. Dcdc42, on the other hand, is required for processes that involve polarized cell shape changes during both pupal and larval development. In the third larval instar, Dcdc42 is required for apico-basal epithelial elongation. Whereas normal wing disc epithelial cells increase in height more than twofold during the third instar, cells that express a dominant-negative version of Dcdc42 remain short and are abnormally shaped. Dcdc42 localizes to both apical and basal regions of the cell during these events, and mediates elongation, at least in part, by effecting a reorganization of the basal actin cytoskeleton. These observations suggest that a common cdc42-based mechanism may govern polarized cell shape changes in a wide variety of cell types.  相似文献   

17.
Lysozyme in the midgut of Manduca sexta during metamorphosis.   总被引:1,自引:0,他引:1  
Low levels of lysozyme were found in the midgut epithelium of the tobacco hornworm, Manduca sexta, during the early part of the fifth larval stadium. This was observed in control insects as well as in bacterially challenged insects. No lysozyme was detected in the gut contents of either group of insects which were actively eating or in the early stages of metamorphosis. However, high levels of lysozyme activity were detected in homogenates of midgut tissue collected from insects later in the stadium. Immunocytochemical studies demonstrated that lysozyme accumulates in large apical vacuoles in regenerative cells of the midgut during the larval-pupal molt. These cells, initially scattered basally throughout the larval midgut epithelium, multiply and form a continuous cell layer underneath the larval midgut cells. At the larval/pupal ecdysis the larval midgut epithelium is sloughed off and the regenerative cells, now forming the single cell layer of the midgut, release the contents of their vacuoles into the midgut lumen. This release results in high lysozyme activity in the lumen of the pupal midgut and is thought to confer protection from bacterial infection. This is the first indication that the lysozyme gene may be developmentally regulated in a specific tissue in the absence of a bacterial infection.  相似文献   

18.
During larval stages of Drosophila development, the abdominal epidermis is composed of histoblasts (adult precursors) and larval epidermal cells (LECs). During metamorphosis, histoblasts proliferate and colonize the territories occupied by the LECs, which die and become engulfed by macrophages. This morphogenetic process is an excellent model for in vivo analysis of epithelial migration, cell division, cell death, patterning and differentiation. Here, we describe a protocol for time-lapse recording of the developing epidermis during metamorphosis. The protocol describes the removal of the pupal case (which acts as an opaque barrier to effective imaging) and mounting and imaging of specimens of different stages so that normal developmental processes are preserved. This method enables high-resolution studies over long time periods using fluorescent markers and confocal microscopy. The protocol requires 1 h for pupal dissection and mounting and, depending on the stages and genotypes to be analyzed, several more hours for preprocessing and aging and developmental staging of flies and pupae.  相似文献   

19.
When Drosophila larvae were irradiated with 1300-1500 R of gamma rays both apoptotic and necrotic cell death were observed in imaginal wing discs. The ultrastructure of cell death by apoptosis was characterized by fragmentation of dead cells into highly condensed, membrane-bound particles. The ultrastructure of cell death by necrosis was characterized by cell lysis and organelle degeneration. Marked contrast was also seen in the distribution of the two types of cell death: apoptosis was universal in irradiated discs and affected widely distributed single cells, or small groups of cells, whereas necrosis formed lesions by afflicting large numbers of contiguous cells. It was noted that even where there were large lesions in the epithelial cell layer, which is the primary component of imaginal discs, the basement membrane associated with this epithelium always remained intact. Lesions could be identified in freshly extirpated discs by staining with trypan blue and were found in 50-70% of irradiated discs (depending on the larval age at the time of irradiation). Lesions were seen in all regions of the wing disc and varied greatly in size. In spite of extensive necrotic cell death wing discs developed into normal adult wings. Regenerative growth in this case would appear to require significant reorganization of cells. Implications of this for the appropriate interpretation of clonal analysis are discussed.  相似文献   

20.
In holometabolous insects such as mosquito, Aedes aegypti, midgut undergoes remodeling during metamorphosis. Insect metamorphosis is regulated by several hormones including juvenile hormone (JH) and 20-hydroxyecdysone (20E). The cellular and molecular events that occur during midgut remodeling were investigated by studying nuclear stained whole mounts and cross-sections of midguts and by monitoring the mRNA levels of genes involved in 20E action in methoprene-treated and untreated Ae. aegypti. We used JH analog, methoprene, to mimic JH action. In Ae. aegypti larvae, the programmed cell death (PCD) of larval midgut cells and the proliferation and differentiation of imaginal cells were initiated at about 36h after ecdysis to the 4th instar larval stage (AEFL) and were completed by 12h after ecdysis to the pupal stage (AEPS). In methoprene-treated larvae, the proliferation and differentiation of imaginal cells was initiated at 36h AEFL, but the PCD was initiated only after ecdysis to the pupal stage. However, the terminal events that occur for completion of PCD during pupal stage were blocked. As a result, the pupae developed from methoprene-treated larvae contained two midgut epithelial layers until they died during the pupal stage. Quantitative PCR analyses showed that methoprene affected midgut remodeling by modulating the expression of ecdysone receptor B, ultraspiracle A, broad complex, E93, ftz-f1, dronc and drice, the genes that are shown to play key roles in 20E action and PCD. Thus, JH analog, methoprene acts on Ae. aegypti by interfering with the expression of genes involved in 20E action resulting in a block in midgut remodeling and death during pupal stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号