首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurobiological actions of ethanol have been linked to perturbations in cyclic AMP (cAMP)-dependent signaling processes. Chronic ethanol exposure leads to desensitization of cAMP production in response to physiological ligands (heterologous desensitization). Ethanol-induced alterations in neuronal expression of G proteins G(s) and G(i) have been invoked as a cause of heterologous desensitization. However, effects of ethanol on G protein expression vary considerably among different experimental protocols, various brain regions and diverse neuronal cell types. Dynamic palmitoylation of G protein alpha subunits is critical for membrane localization and protein-protein interactions, and represents a regulatory feature of G protein function. We studied the effect of ethanol on G alpha(s) palmitoylation. In NG108-15 rat neuroblastoma x glioma hybrid cells, acute exposure to pharmacologically relevant concentrations of ethanol (25-100 mm) inhibited basal and prostaglandin E1-stimulated incorporation of palmitate into G alpha(s). Exposure of NG108-15 cells to ethanol for 72 h induced a shift in G alpha(s) to its non-palmitoylated state, coincident with an inhibition of prostaglandin E1-induced cAMP production. Both parameters were restored following 24 h of ethanol withdrawal. Chronic ethanol exposure also induced the depalmitoylation of G alpha(s) in human embryonic kidney (HEK)293 cells that overexpress wild-type G alpha(s) and caused heterologous desensitization of adenylyl cyclase. By contrast, HEK293 cells that express a non-palmitoylated mutant of G alpha(s) were insensitive to heterologous desensitization after chronic ethanol exposure. In summary, the findings identify a novel effect of ethanol on post-translational lipid modification of G alpha(s), and represent a mechanism by which ethanol might affect adenylyl cyclase activity.  相似文献   

2.
Cysteine string proteins (CSPs) are secretory vesicle chaperone proteins that contain: (i) a heavily palmitoylated cysteine string (comprised of 14 cysteine residues, responsible for the localization of CSP to secretory vesicle membranes), (ii) an N-terminal J-domain (DnaJ domain of Hsc70, 70 kDa heat-shock cognate protein family of co-chaperones), and (iii) a linker domain (important in mediating CSP effects on secretion). In this study, we investigated the localization of CSP1 in rat parotid acinar cells and evaluated the role of CSP1 in parotid secretion. RT-PCR and western blotting revealed that CSP1 was expressed and associated with Hsc70 in rat parotid acinar cells. Further, CSP1 associated with syntaxin 4, but not with syntaxin 3, on the apical plasma membrane. Introduction of anti-CSP1 antibody into SLO-permeabilized acinar cells enhanced isoproterenol (IPR)-induced amylase release. Introduction of GST-CSP11–112, containing both the J-domain and the adjacent linker region, enhanced IPR-induced amylase release, whereas neither GST-CSP11–82, containing the J-domain only, nor GST-CSP183–112, containing the linker region only, did produce detectable enhancement. These results indicated that both the J-domain and the linker domain of CSP1 are necessary to function an important role in acinar cell exocytosis.  相似文献   

3.
CSP function is vital to synaptic transmission, however; the precise nature of its role remains controversial. Conflicting reports support either a role for CSP: (i) in exocytosis or (ii) in the regulation of transmembrane calcium fluxes. Here we have examined the self-association of CSP to form oligomers that are stable upon SDS-PAGE. To understand the structural requirements for CSP self-association a series of CSP deletion mutants were constructed, expressed, and purified. This analysis revealed an interesting pattern of oligomerization. Amino acids between 83 and 136 were observed to be important for self-association. The recombinant CSP oligomers as well as the CSP monomers directly associate with Ni(2+)-NTA agarose. Thus CSP-CSP interactions may be an important consideration for current working models of CSP chaperone activity at the synapse.  相似文献   

4.
Cysteine string protein (CSPalpha) is a member of the cellular folding machinery that is located on regulated secretory vesicles. We have previously shown that CSPalpha in association with Hsc70 (70kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) is a guanine nucleotide exchange factor (GEF) for G(alphas). Association of this CSPalpha complex with N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis, triggers tonic G protein inhibition of the channels. Syntaxin 1A, a plasma membrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, coimmunoprecipitates with the CSPalpha/G protein/N-type calcium channel complex, however the significance of syntaxin 1A as a component of this complex remains unknown. In this report, we establish that syntaxin 1A interacts with CSPalpha, Hsc70 as well as the synaptic protein interaction (synprint) region of N-type channels. We demonstrate that huntingtin(exon1), a putative biologically active fragment of huntingtin, displaces both syntaxin 1A and CSPalpha from N-type channels. Identification of the protein components of the CSPalpha/GEF system is essential in establishing its precise role in synaptic transmission.  相似文献   

5.
6.
The crystal structure of soluble functional fragments of adenylyl cyclase complexed with G alpha(s) and forskolin, shows three regions of G alpha(s) in direct contact with adenylyl cyclase. The functions of these three regions are not known. We tested synthetic peptides encoding these regions of G alpha(s) on the activities of full-length adenylyl cyclases 2 and 6. A peptide encoding the Switch II region (amino acids 222-247) stimulated both adenylyl cyclases 2- to 3-fold. Forskolin synergized the stimulation. Addition of peptides in the presence of activated G alpha(s) partially inhibited G alpha(s) stimulation. Corresponding Switch II region peptides from G alpha(q) and G alpha(i) did not stimulate adenylyl cyclase. A peptide encoding the Switch I region (amino acids 199-216) also stimulated AC2 and AC6. The stimulatory effects of the two peptides at saturating concentrations were non-additive. A peptide encoding the third contact region (amino acids 268-286) located in the alpha 3-beta 5 region, inhibits basal, forskolin, and G alpha(s)-stimulated enzymatic activities. Since this region in G alpha(s) interacts with both the central cytoplasmic loop and C-terminal tail of adenylyl cyclases this peptide may be involved in blocking interactions between these two domains. These functional data in conjunction with the available structural information suggest that G alpha(s) activation of adenylyl cyclase is a complex event where the alpha 3-beta 5 loop of G alpha(s) may bring together the central cytoplasmic loop and C-terminal tail of adenylyl cyclase thus allowing the Switch I and Switch II regions to function as signal transfer regions to activate adenylyl cyclase.  相似文献   

7.
RH-RhoGEFs are a family of guanine nucleotide exchange factors that contain a regulator of G protein signaling homology (RH) domain. The heterotrimeric G protein Gα(13) stimulates the guanine nucleotide exchange factor (GEF) activity of RH-RhoGEFs, leading to activation of RhoA. The mechanism by which Gα(13) stimulates the GEF activity of RH-RhoGEFs, such as p115RhoGEF, has not yet been fully elucidated. Here, specific residues in Gα(13) that mediate activation of p115RhoGEF are identified. Mutation of these residues significantly impairs binding of Gα(13) to p115RhoGEF as well as stimulation of GEF activity. These data suggest that the exchange activity of p115RhoGEF is stimulated allosterically by Gα(13) and not through its interaction with a secondary binding site. A crystal structure of Gα(13) bound to the RH domain of p115RhoGEF is also presented, which differs from a previously crystallized complex with a Gα(13)-Gα(i1) chimera. Taken together, these data provide new insight into the mechanism by which p115RhoGEF is activated by Gα(13).  相似文献   

8.
Distribution of the alpha subunit of the stimulatory G protein (G(s)alpha) was analyzed in membrane and cytosolic (supernatant 200 000 g) fractions from rat cortex, thalamus and hippocampus during the course of post-natal development. In parallel, changes in beta-adrenoceptor density and adenylyl cyclase activity were determined. Long (G(s)alphaL) and short (G(s)alphaS) variants of G(s)alpha were assessed by immunoblotting using specific polyclonal antisera reacting with both G(s)alpha isoforms. Post-natal development was associated with an increase in the total amount of brain G(s)alpha. G(s)alphaL was the dominant isoform of G(s)alpha in the membrane fractions of all studied brain regions and its amount increased markedly between post-natal day (PD) 1 and 90. The level of membrane-bound G(s)alphaS also elevated during post-natal development, but more pronounced changes were found in cytosolic G(s)alphaS. Although only a small amount of G(s)alphaS (much smaller than G(s)alphaL) was detected among soluble proteins shortly after birth, G(s)alphaS prevailed over G(s)alphaL at PD90. The G(s)alphaL/G(s)alphaS ratio decreased, respectively, from 3.2 to 1.2 and from 5.0 to 1.5 in the membrane fractions of cortex and hippocampus, but remained almost constant in thalamus between PD1 and 90. More dramatic changes were found in the cytosolic fractions of all studied brain regions: the G(s)alphaL/G(s)alphaS ratio decreased sharply in cortex (from 14.1 to 0.9), hippocampus (from 3.7 to 0.8), and also in thalamus (from 9.5 to 0.5). These results demonstrate that the membrane-cytosol balance of G(s)alpha proteins alters dramatically during the course of brain development. Both G(s)alphaL and G(s)alphaS were expressed in a region- and age-specific manner, which suggests different roles in the maturation of the brain tissue. A cyc(-) reconstitutive assay of cytosolic G(s)alpha indicated that only approximately 20% of this protein was functional, compared with membrane-bound G(s)alpha, and its ability to reconstitute adenylyl cyclase activity increased during the course of maturation. The number of beta-adrenoceptors increased sharply during early post-natal development but only slightly in adulthood, and both GTP- and isoproterenol-stimulated adenylate cyclase activity reached peak values around PD12.  相似文献   

9.
Low-density membrane-domain fractions were prepared from S49 lymphoma cells and clone e2m11 of HEK293 cells expressing a large number of thyrotropin-releasing hormone receptor (TRH-R) and G(11)alpha by flotation on sucrose density gradients. The intact cell structure was broken by detergent-extraction, alkaline-treatment or drastic homogenization. Three types of low-density membranes were resolved by two-dimensional electrophoresis and analyzed for G(s)alpha (S49) or G(q)alpha/G11) (e2m11) content. Four individual immunoblot signals of Gsalpha protein were identified in S49 lymphoma cells indicating complete resolution of the long G(s)alpha L+/-ser and short G(s)alpha S+/-ser variants of G(s)alpha. All these were diminished by prolonged agonist (isoprenaline) stimulation. In e2m11-HEK cells, five different immunoblot signals were detected indicating post-translational modification of G proteins of G(q)alpha/G(11)alpha family. The two major spots corresponding to exogenously (over)expressed G(11)alpha and endogenous G(q)alpha were reduced; the minor spots diminished by hormonal stimulation. Parallel analysis by silver staining of the total protein content indicated that no major changes in protein composition occurred under these conditions. Our data thus indicate that agonist-stimulation of target cells results in down-regulation of all different members of G(s) and G(q)/G(11) families. This agonist-specific effect may be demonstrated in crude membrane as well as domain/raft preparations and it is not accompanied by changes in overall protein composition.  相似文献   

10.
In addition to the core vesicle fusion machinery, the SNARE proteins, a large number of regulatory proteins have been implicated in the process of Ca2+-dependent exocytosis. How these exocytotic proteins are properly targeted and how their myriad interactions are temporally and spatially coordinated is poorly understood. Cysteine string protein (CSP), a secretory vesicle membrane protein and a member of the dnaJ family of co-chaperones, may assist in performing this function. Through its interaction with the ubiquitous chaperone, Hsc70, it is thought that cysteine string protein targets chaperone complexes to the exocytotic machinery to facilitate the correct folding of polypeptides or to regulate the assembly of protein complexes. Since its discovery, there have been conflicting reports from different systems concerned with whether cysteine string protein exerts its effects on exocytosis either up- or down-stream of Ca2+-influx. In this review, we summarize recent experiments that associate cysteine string protein with the regulation of vesicle filling, vesicle docking, Ca2+-channels and the SNARE proteins themselves, hence supporting a role for cysteine string protein as a multifunctional secretory co-chaperone. In addition, we provide an update on the mammalian isoforms of cysteine string protein following the recent discovery of two novel cysteine string proteins.  相似文献   

11.
12.
The G alpha subunit of G(12) protein, one of the heterotrimeric G proteins, regulates diverse and complex cellular responses by transducing signals from the cell surface, presumably involving more than one downstream effector. Yeast two-hybrid screening of a human testis cDNA library identified a large fragment of Hsp90 as a protein that interacted with G alpha(12). The interaction between G alpha(12) and Hsp90 was further substantiated by a co-immunoprecipitation technique. We have determined that Hsp90 is not required for the interaction of G alpha(12) with its binding partners, p115(RhoGEF) and the G beta subunit. Importantly, Hsp90 is required for G alpha(12)-induced serum response element activation, cytoskeletal changes, and mitogenic response. Closely related to G alpha(12), the G alpha(13) subunit did not interact with Hsp90 and did not require functional Hsp90 for serum response element activation. Thus, our results identify a novel signaling module of G alpha(12) and Hsp90.  相似文献   

13.
Progesterone, produced by follicular cells, induces Xenopus laevis oocyte maturation through a very early event that inhibits the activity of the adenylyl cyclase effector system. The participation of a G-protein has been implicated, based on the fact that the inhibitory effect of the steroid is GTP-dependent, and it has been proposed that progesterone acts interfering with G(alpha)s function at the plasma membrane. Here we investigate whether the change in oocyte G(alpha)s levels affects the maturation process induced by progesterone. Overexpression of X. laevis wild type (wt) G(alpha)s and the constitutive activated G(alpha)s(QL) mutant, both blocked progesterone-induced maturation, G(alpha)s(QL) being much more effective than the wt protein. On the other hand, depletion of G(alpha)s, by the use of antisense oligonucleotides, caused spontaneous maturation measured as MAPK activation, indicating clearly that the presence of G(alpha)s is necessary to keep oocytes arrested. Overexpression of three different G-protein coupled receptors (GPCR), the beta2-adrenergic receptor and the m4 and m5 muscarinic receptors, all caused inhibition of MAPK activation induced by progesterone. These receptors, upon their activation with the respective ligands, might be inducing the release of G(beta)gamma from their respective G(alpha), which together with endogenous G(alpha)s-GTP, activate adenylyl cyclase. Our results indicate that G(alpha)s plays an important role in the maturation process and support previous findings of G(beta)gamma participation, suggesting the presence of a mechanism where a constitutively activated G(alpha)s subunit, together with the G(beta)gamma heterodimer, both maintain high levels of intracellular cAMP levels, blocking the G2/M transition.  相似文献   

14.
Plasmatic levels of pregnancy zone protein (PZP) increase in children with acute Chagas disease. PZP, as well as alpha2-macroglobulin (alpha2-M), are able to interact with Trypanosoma cruzi proteinases. The interaction of alpha2-M and PZP with cruzipain, the major cysteine proteinase of T. cruzi, was investigated. Several molecular changes on both alpha-M inhibitors under reaction with cruzipain were found. PAGE analysis showed: (i) formation of complexes of intermediate mobility and tetramerization of native alpha2-M and PZP, respectively; (ii) limited proteolysis of bait region in alpha2-M and PZP, and (iii) covalent binding of cruzipain to PZP and alpha2-M. Conformational and structural changes experimented by alpha-Ms correlate with modifications of the enzyme electrophoretic mobility and activity. Cruzipain-alpha-M complexes were also detected by gelatin SDS-PAGE and immunoblotting using polyclonal anti-cruzipain antibodies. Concomitantly, alpha2-M and PZP impaired the activity of cruzipain towards Bz-Pro-Phe-Arg-pNA substrate. In addition, alpha-Ms were able to form covalent complexes with membrane isoforms of cysteine proteinases cross-reacting with cruzipain. The present study suggests that both human alpha-macroglobulin inhibitors could prevent or minimize harmful action of cruzipain on host's molecules and hypothetically regulate parasite functions controlled by cruzipain.  相似文献   

15.
RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys(95) in RGS4, Cys(66) in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys(2) or Cys(12). The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [(3)H]palmitate labeling of Cys(95). Membrane-bound RGS4 is palmitoylated both at Cys(95) and Cys(2/12), but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys(95) on RGS4 or Cys(66) on RGS10 inhibits GAP activity 80-100% toward either Galpha(i) or Galpha(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity >/=20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Galpha(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.  相似文献   

16.
The function of guanine nucleotide binding (G) proteins is Mg2+ dependent with guanine nucleotide exchange requiring higher metal ion concentration than guanosine 5′-triphosphate hydrolysis. It is unclear whether two Mg2+ binding sites are present or if one Mg2+ binding site exhibits different affinities for the inactive GDP-bound or the active GTP-bound conformations. We used furaptra, a Mg2+-specific fluorophore, to investigate Mg2+ binding to α subunits in both conformations of the stimulatory (G) and inhibitory (Giα1) regulators of adenylyl cyclase. Regardless of the conformation or α protein studied, we found that two distinct Mg2+ sites were present with dissimilar affinities. With the exception of G in the active conformation, cooperativity between the two Mg2+ sites was also observed. Whereas the high affinity Mg2+ site corresponds to that observed in published X-ray structures of G proteins, the low affinity Mg2+ site may involve coordination to the terminal phosphate of the nucleotide.  相似文献   

17.
Protein kinase D (PKD/PKCmu) immunoprecipitated from COS-7 cells transiently transfected with a constitutively active alpha subunit of G(q) (Galpha(q)Q209L) exhibited a marked increase in basal activity, which was not further enhanced by treatment of the cells with phorbol 12,13-dibutyrate. In contrast, transient transfection of COS-7 cells with activated Galpha(12)Q229L or Galpha(13)Q226L neither promoted PKD activation nor interfered with the increase of PKD activity induced by phorbol 12,13-dibutyrate. The addition of aluminum fluoride to cells co-transfected with PKD and wild type Galpha(q) induced a marked increase in PKD activity, which was comparable with that induced by expression of Galpha(q)Q209L. Treatment with the protein kinase C inhibitor GF I or Ro 31-8220 prevented the increase in PKD activity induced by aluminum fluoride. Expression of a COOH-terminal fragment of Galpha(q) that acts in a dominant negative fashion attenuated PKD activation in response to agonist stimulation of bombesin receptor. PKD activation in response to either Galpha(q) or bombesin was completely prevented by mutation of Ser(744) and Ser(748) to Ala in the kinase activation loop of PKD. Our results show that Galpha(q) activation is sufficient to stimulate sustained PKD activation via protein kinase C and indicate that the endogenous Galpha(q) mediates PKD activation in response to acute bombesin receptor stimulation.  相似文献   

18.
Forward genetic screens for mutations that rescue the paralysis of ric-8 (Synembryn) reduction-of-function mutations frequently reveal mutations that cause hyperactivation of one or more components of the G alpha(s) pathway. Here, we report that one of these mutations strongly reduces the function of the Dunce cAMP phosphodiesterase PDE-4 by disrupting a conserved active site residue. Loss of function and neural overexpression of PDE-4 have profound and opposite effects on locomotion rate, but drug-response assays suggest that loss of PDE-4 function does not affect steady-state acetylcholine release or reception. Our genetic analysis suggests that PDE-4 regulates both G alpha(s)-dependent and G alpha(s)-independent cAMP pools in the neurons controlling locomotion rate. By immunostaining, PDE-4 is strongly expressed throughout the nervous system, where it localizes to small regions at the outside boundaries of synaptic vesicle clusters as well as intersynaptic regions. The synaptic subregions containing PDE-4 are distinct from those containing active zones, as indicated by costaining with an antibody against the long form of UNC-13. This highly focal subsynaptic localization suggests that PDE-4 may exert its effects by spatially regulating intrasynaptic cAMP pools.  相似文献   

19.
It has long been known that animal heterotrimeric Gαβγ proteins are activated by cell-surface receptors that promote GTP binding to the Gα subunit and dissociation of the heterotrimer. In contrast, the Gα protein from Arabidopsis thaliana (AtGPA1) can activate itself without a receptor or other exchange factor. It is unknown how AtGPA1 is regulated by Gβγ and the RGS (regulator of G protein signaling) protein AtRGS1, which is comprised of an RGS domain fused to a receptor-like domain. To better understand the cycle of G protein activation and inactivation in plants, we purified and reconstituted AtGPA1, full-length AtRGS1, and two putative Gβγ dimers. We show that the Arabidopsis Gα protein binds to its cognate Gβγ dimer directly and in a nucleotide-dependent manner. Although animal Gβγ dimers inhibit GTP binding to the Gα subunit, AtGPA1 retains fast activation in the presence of its cognate Gβγ dimer. We show further that the full-length AtRGS1 protein accelerates GTP hydrolysis and thereby counteracts the fast nucleotide exchange rate of AtGPA1. Finally, we show that AtGPA1 is less stable in complex with GDP than in complex with GTP or the Gβγ dimer. Molecular dynamics simulations and biophysical studies reveal that altered stability is likely due to increased dynamic motion in the N-terminal α-helix and Switch II of AtGPA1. Thus, despite profound differences in the mechanisms of activation, the Arabidopsis G protein is readily inactivated by its cognate RGS protein and forms a stable, GDP-bound, heterotrimeric complex similar to that found in animals.  相似文献   

20.
Proteins that serve as regulator of G protein signaling (RGS) primarily function as GTPase accelerators that promote GTP hydrolysis by the Gα subunits, thereby inactivating the G protein and rapidly switching off G protein-coupled signaling pathways. Since the first RGS protein was identified from the budding yeast Saccharomyces cerevisiae, more than 30 RGS and RGS-like proteins have been characterized from several model fungi, such as Aspergillus nidulans, Beauveria bassiana, Candida albicans, Fusarium verticillioides, Magnaporthe oryzae, and Metarhizium anisopliae. In this review, the partial biochemical properties and functional domains of RGS and RGS-like proteins were predicted and compared, and the roles of RGS and RGS-like proteins in different fungi were summarized. Moreover, the phylogenetic relationship among RGS and RGS-like proteins from various fungi was analyzed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号