首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We have characterized the role of tyrosine phosphorylation in protooncogene induction mediated by insulin-like growth factors I and II (IGF-I and IGF-II) in the Madin-Darby canine kidney (MDCK) cell line. These cells possess few, if any, insulin receptors, thus allowing determination of the effects of these growth factors in the absence of any secondary signal mediated through the insulin receptor. We found that IGF-I produced a specific stimulation of tyrosine kinase activity of the 97-kDa beta-subunit of the IGF-I receptor, resulting in autophosphorylation of the receptor and an increase in kinase activity toward a synthetic peptide substrate. This was associated with a gradual decrease in the level of phosphorylation of pp120, the major constitutive phosphotyrosine-containing protein of MDCK cells, and an increase in the ratio of serine to tyrosine phosphorylation. This was followed by a rapid, but transient, induction of c-fos gene expression, with no change in the levels of c-myc mRNA. Cycloheximide treatment resulted in a superinduction of both c-fos and c-myc and prevented any further stimulation by IGF-I. IGF-II did not stimulate tyrosine phosphorylation of its own receptor, but was 25% as active as IGF-I in stimulating phosphorylation of the IGF-I receptor. Despite this, IGF-II did not significantly enhance the expression of either nuclear protooncogene. Insulin also produced a delayed stimulation of IGF-I receptor phosphorylation, but was unable to stimulate biological effects in these cells. Under these conditions neither of the IGFs nor insulin produced any significant stimulation of thymidine incorporation into DNA. These data indicate that the IGF-I receptor can be activated upon binding of IGF-I, and to a lesser extent IGF-II, in intact cells to mediate cellular events. The nature of the signal generated by the IGF-I receptor appears to vary depending on the ligand that occupies it.  相似文献   

2.
Cultured NIH-3T3 cells devoid of endogenous epidermal growth factor (EGF) receptors were transfected with cDNA expression constructs encoding either normal human EGF receptor or a receptor mutated in vitro at Lys-721, a residue that is thought to function as part of the ATP-binding site of the kinase domain. Unlike the wild-type EGF-receptor expressed in these cells, which exhibited EGF-dependent protein tyrosine kinase activity, the mutant receptor lacked protein tyrosine kinase activity and was unable to undergo autophosphorylation and to phosphorylate exogenous substrates. Despite this deficiency, the mutant receptor was normally expressed on the cell surface, and it exhibited both high- and low-affinity binding sites. The addition of EGF to cells expressing wild-type receptors caused the stimulation of various responses, including enhanced expression of proto-oncogenes c-fos and c-myc, morphological changes, and stimulation of DNA synthesis. However, in cells expressing mutant receptors, EGF was unable to stimulate these responses, suggesting that the tyrosine kinase activity is essential for EGF receptor signal transduction.  相似文献   

3.
We have investigated the effects of transforming growth factor alpha (TGF alpha) in C3H10T1/2 cells, on S phase entry and early gene activation events associated with cell cycle progression. We find that EGF and TGF alpha, which both utilize the EGF receptor for signal generation, are able to stimulate DNA synthesis in these cells with nearly superimposable kinetics; however, the stimulation by TGF alpha was slightly greater at nearly all time points assayed. This report is the first showing that TGF alpha, like EGF, vigorously induces c-myc and c-fos gene expression in these cells. A significant stimulation of c-myc and c-fos mRNA levels is observed with both TGF alpha and EGF; c-myc mRNA levels show an 8-fold induction with both mitogens, while c-fos inductions were on the order of 12 to 14-fold at maximum. However, the induction of c-myc mRNA by TGF alpha has slower kinetics than by EGF.  相似文献   

4.
Bombesin is a potent mitogen for Swiss 3T3 cells and acts synergistically with insulin and other growth factors. We show here that addition of bombesin to quiescent Swiss 3T3 cells causes a striking increase in the levels of c-fos and c-myc mRNAs. Enhanced expression of c-fos (122 +/- 14-fold) occurred within minutes of peptide addition followed by increased expression of c-myc (82 +/- 16-fold). The concentrations of peptide required for half-maximal increase in the levels of c-fos and c-myc mRNAs were 1.0 and 0.9 nM, respectively. The peptide [D-Arg1, D-Pro2, D-Trp7,9, Leu11] substance P which inhibits the binding of bombesin to its receptor and bombesin-stimulated DNA synthesis in Swiss 3T3 cells blocked the increase in c-fos and c-myc mRNA levels promoted by bombesin. Down-regulation of protein kinase C by long-term exposure to phorbol esters prevented c-fos and c-myc induction by bombesin. This and other results indicate that the induction of these proto-oncogenes by bombesin could be mediated by the coordinated effects of protein kinase C activation and Ca2+ mobilization. The marked synergistic effect between bombesin and insulin was used to assess whether the increase in the induction of c-fos and c-myc is an obligatory event in cell activation. In the presence of insulin, bombesin stimulated DNA synthesis at subnanomolar concentrations but had only a small effect on c-fos and c-myc mRNA levels. This apparent dissociation of mitogenesis from proto-oncogene induction was even more dramatic in 3T3 cells with down-regulated protein kinase C. In these cells bombesin stimulated DNA synthesis in the presence of insulin but failed to enhance c-fos and c-myc mRNA levels at comparable concentrations. Thus, the induction of c-fos and c-myc may be a necessary step in the mitogenic response initiated by ligands that act through activation of protein kinase C but the expression of these proto-oncogenes may not be an obligatory event in the stimulation of mitogenesis in 3T3 cells by mitogens that utilise other signalling pathways.  相似文献   

5.
Synthetic compounds called tyrphostins were examined for their effects on cells which are mitogenically responsive to epidermal growth factor (EGF). We studied in detail the effects of two tyrphostins on EGF binding, tyrosine phosphorylation in intact cells, EGF-receptor internalization, and mitogenesis. These compounds inhibited EGF-stimulated [3H]thymidine incorporation in a specific manner and the degree of selectivity varied. Both compounds inhibited EGF-stimulated receptor autophosphorylation and tyrosine phosphorylation of endogenous substrates in intact cells at doses that correlated with the IC50 for [3H] thymidine incorporation. These results are consistent with the notion that tyrosine phosphorylation is a crucial signal in transduction of the mitogenic message delivered by EGF. The compound RG50864 demonstrated specificity at inhibiting EGF-stimulated cell growth compared with stimulation with either platelet-derived growth factor or serum. For both compounds RG50864 and RG50810, long term exposure (16 h) of cells to tyrphostins was required for optimal inhibition because of the instability and slow action of these compounds. Tyrphostins did not alter cell surface display of EGF-receptor, EGF binding or EGF-induced internalization, degradation, and down-regulation of EGF receptors. These novel synthetic inhibitors, specific for EGF-receptor kinase, offer a new method to inhibit EGF-stimulated cell proliferation which may be useful in treating specific pathological conditions involving cellular proliferation, including different types of cancers.  相似文献   

6.
Stimulation of quiescent fibroblasts to growth by polypeptide growth factors is accompanied by the rapid induction of c-fos and c-myc proto-oncogenes. In contrast to fibroblasts, A431 cells respond to epidermal growth factor (EGF) with a decreased growth rate. Here we report that, in spite of its growth inhibitory effect, EGF rapidly induces transient expression of c-fos mRNA, followed by the synthesis of nuclear c-fos protein. In addition, EGF treatment resulted in elevated levels of c-myc expression. Practically identical results were obtained with variant A431 clones that are resistant to the inhibitory effect of EGF on cell proliferation. These observations suggest that in A431 cells c-fos and c-myc induction is a primary consequence of growth factor-receptor interaction. Indeed, efficient induction of both genes was also observed with cyanide bromide-cleaved EGF, which has previously been shown to be non-mitogenic but able to trigger early events induced by EGF. We observed strong induction of c-fos and to a lesser extent of c-myc also by TPA, and by the calcium ionophore A23187, indicating an important role for kinase C in proto-oncogene activation by growth factors.  相似文献   

7.
The proliferative effects of EGF in liver have been extensively investigated in cultured hepatocytes. We studied the effects of EGF, insulin, and other growth regulators on the expression, interaction, and signaling of ErbB receptors in primary cultures of adult rat hepatocytes. Using immunological methods and ErbB tyrosine kinase inhibitors, we analyzed the expression and signaling patterns of the ErbB kinases over 120 h of culture. Basal and EGF-stimulated protein tyrosine phosphorylation increased as cells adapted in vitro. EGF receptor (EGFr) expression declined in the first 24 h, whereas ErbB3 expression rose. Although ErbB2 was not present in freshly isolated hepatocytes, EGF and insulin independently induced ErbB2 while suppressing ErbB3 expression. Low concentrations of EGF and insulin synergistically stimulated ErbB2 expression and DNA synthesis. The greatest increase in ErbB2, which is normally expressed by fetal and neonatal hepatocytes, occurred shortly before the onset of DNA synthesis (> 40 h). EGF promoted EGFr and ErbB2 coassociation, stimulating tyrosine phosphorylation of both proteins. In contrast, heregulin beta1 (HRG-beta1) did not promote ErbB2 and ErbB3 coassociation. A selective tyrphostin inhibitor of ErbB2 suppressed EGF-stimulated DNA synthesis, but maximum suppression required the blockade of the EGFr kinase as well. Maximal EGF stimulation of DNA synthesis in vitro depends on the induction of ErbB2 and involves an EGFr-ErbB2 heterodimer. The ability of insulin to induce ErbB2 suggests both a mechanism for the synergy between insulin and EGF and a possible metabolic control of ErbB2 in vivo.  相似文献   

8.
Activated p21ras alters the platelet-derived growth factor (PDGF) signal transduction pathway in fibroblasts by inhibiting autophosphorylation of the receptor as well as by inhibiting the induction of the growth-related genes c-myc, c-fos, and JE. To elucidate the cause and effect relationships between receptor autophosphorylation and other second messenger events in the PDGF signaling pathway we created revertants of v-ras transformed cells by two methods: 1) the use of cAMP analogues, and 2) the introduction of a gene, Krev-1, which has been reported previously to revert ras transformed cells to normal morphology. Analysis of the revertants shows that the PDGF-mediated tyrosine phosphorylation of the 180-kDa PDGF receptor remains inhibited; however, the PDGF-mediated activation of phospholipase C and the induction of the growth-related genes c-myc, c-fos, and JE have been restored. These data suggest the presence of parallel pathways for PDGF signal transduction which are not dependent on autophosphorylation of the PDGF receptor.  相似文献   

9.
The receptors for insulin and insulin-like growth factor I (IGF-I) have in common a high sequence homology and diverse overlapping functions, (e.g., the stimulation of acute metabolic events and the induction of cell growth.). In the present study, we have compared the potential of insulin and IGF-I receptors in stimulating glucose transport activity, glucose transporter gene expression, DNA-synthesis, and expression of proto-oncogene c-fos in 3T3-L1 adipocytes which express high levels of both receptors. Binding of both hormones to their own receptors was highly specific as compared with binding to the respective other receptor (insulin receptor: KD = 3.6 nM, KI of IGF-I greater than 500 nM; IGF-I receptor, KD = 1.1 nM, KI of insulin = 191 nM). Induction of proto-oncogene c-fos mRNA by insulin and IGF-I paralleled their respective receptor occupancy and was thus induced by both hormones via their own receptor (EC50 of insulin, 3.7; IGF-I, 3.9 nM). Similarly, both insulin and IGF-I increased DNA synthesis (EC50 of insulin, 5.8 nM; IGF-I, 4.0 nM), glucose transport activity (EC50 of insulin, 1.7 nM; IGF-I, 1.4 nM), and glucose transporter (GLUT4) mRNA levels in concentrations corresponding with their respective receptor occupancy. These data indicate that in 3T3-L1 cells the alpha-subunits of insulin and IGF-I receptors have an equal potential to stimulate a metabolic and a mitogenic response.  相似文献   

10.
11.
The specific tyrosine phosphorylation of glucose-6-phosphate dehydrogenase (G6PDH) by the epidermal growth factor (EGF) receptor in vitro is demonstrated. The Km values of the substrate G6PDH and of ATP for the receptor tyrosine kinase were ca. 1 and 10 microM, respectively. The rate of phosphorylation was EGF dependent, with a four-fold increase in Vmax in the presence of EGF. The phosphorylation was stimulated maximally by 0.2 microM or greater EGF, with an ED50 of ca. 20 nM which is consistent with the affinity of the solubilized receptor for EGF. Using conditions of 5 microM G6PDH, 100 microM ATP, 5 mM Mg2+, and 1 mM Mn2+, up to 0.3 mol phosphate was incorporated into 1 mol of the 55-kDa subunit of Baker's yeast G6PDH. Tryptic peptide mapping revealed several unique phosphopeptides for both Baker's yeast and bovine adrenal G6PDH. The patterns of phosphopeptides for a given enzyme were identical for basal and EGF-stimulated phosphorylation.  相似文献   

12.
To investigate the functional significance of epidermal growth factor (EGF) receptor phosphorylation, experimental systems were explored in which receptor phosphorylation on tyrosine and serine/threonine could be differentially stimulated. Exposure of A431 cells to 20 nM EGF at 37 degrees C results in phosphorylation of serine, threonine, and tyrosine sites on the receptor. Monoclonal antibody (mAb) 225 binds to the EGF receptor with affinity comparable to EGF and competes with the binding of EGF. Exposure of A431 cells to 20 nM EGF in the presence of 300 nM anti-EGF receptor mAb 225 (15-fold excess) selectively activated serine and threonine phosphorylation of the receptor, but not tyrosine phosphorylation. This observation indicates that EGF-mediated receptor phosphorylation on tyrosine and on serine/threonine residues is dissociable. The intracellular fate of the EGF receptor was examined under conditions that produce different phosphorylation states of receptor amino acids. Exposure of A431 cells to EGF decreased the half-life (T1/2) of the receptor from 17.8 h to 5.6 h, with activation of tyrosine, serine, and threonine phosphorylation. Incubation with mAb 225 augmented the degradation rate (T1/2 = 8.5 h) without activation of receptor phosphorylation. Concurrent exposure to EGF (20 nM) and mAb 225 (300 nM) resulted in comparable enhanced degradation (T1/2 = 9.5 h), with increased phosphorylation only on serine and threonine residues. These results suggest that serine/threonine phosphorylation is irrelevant to the augmentation of receptor degradation. Methylamine, an inhibitor of lysosomal function that did not affect phosphorylation of the EGF receptor, completely protected EGF receptors from rapid degradation induced by EGF, but it only slightly altered the rate of EGF receptor degradation elicited by mAb 225 or by EGF plus 15-fold excess mAb 225. In contrast, mAb 455, which binds to the receptor but does not inhibit EGF binding and EGF-induced activation of phosphorylation on tyrosine, serine, and threonine residues, did not influence EGF-induced rapid, methylamine sensitive degradation of EGF receptor. The results suggest that when EGF receptors are internalized under conditions that do not activate the receptor tyrosine kinase, they are sorted into a nonlysosomal pathway that differs from the methylamine-sensitive lysosomal pathway traversed following activation by EGF. The data indicate the possibility of a function for tyrosine kinase activation and tyrosine autophosphorylation in determining the lysosomal intracellular pathway of EGF receptor processing and degradation.  相似文献   

13.
The epidermal growth factor (EGF) receptor tyrosine kinase activity is required for both the earliest EGF-stimulated post-binding events (enhancement of inositol phosphate formation and Ca2+ influx, activation of Na+/H+ exchange), and the ultimate EGF-induced mitogenic response. To assess the role of EGF receptor kinase in EGF-induced metabolic effects (2-deoxyglucose and 2-aminoisobutyric acid uptake), we used NIH3T3 cells (clone 2.2), which do not possess endogenous EGF receptors and which were transfected with cDNA constructs encoding either wild type or kinase-deficient human EGF receptor (HER). In addition, we tested the importance of three HER autophosphorylation sites (Tyr-1068, Tyr-1148, and Tyr-1173) in transduction of EGF-stimulated 2-deoxyglucose uptake. Taking our data together, we conclude the following: (i) HER tyrosine kinase activity is required to elicit EGF stimulation of both 2-deoxyglucose and 2-aminoisobutyric acid uptake; (ii) mutations on individual HER autophosphorylation sites, Tyr-1068, Tyr-1148, and Tyr-1173 do not impair EGF-stimulated 2-deoxyglucose uptake.  相似文献   

14.
Antisera were prepared against three synthetic peptides with amino acid sequences identical to those surrounding the three major autophosphorylation sites of the epidermal growth factor (EGF) receptor. The affinity-purified antibodies reacted strongly in an enzyme-linked immunosorbent assay against the immunizing peptide but showed little cross-reaction with the other two phosphorylation site peptides. EGF receptors labelled by autophosphorylation could be specifically precipitated by each of the phosphorylation site antibodies. The antibodies recognised EGF receptors labelled at each of the autophosphorylation sites, indicating that they could bind to the immunizing sequences irrespective of their states of phosphorylation. The antibodies were able to inhibit EGF receptor autophosphorylation without affecting EGF-stimulated tyrosine kinase activity towards exogenous peptide substrates, suggesting that the kinase and autophosphorylation sites were in distinct domains. Immunofluorescent staining of A431 cells showed that the autophosphorylation site sequences resided inside the cell. The autophosphorylation sites were shown to be within a domain of 20 000 mol. wt. which could be cleaved from the receptor through limited proteolysis by the calcium-dependent protease, calpain. The position of cleavage of the EGF receptor by the protease was mapped to lie between residues 996 and 1059. These results are discussed in the context of a model for the structure and function of the human EGF receptor.  相似文献   

15.
We have designed a molecule, GFB-111, that binds to platelet-derived growth factor (PDGF), prevents it from binding to its receptor tyrosine kinase, and blocks PDGF-induced receptor autophosphorylation, activation of Erk1 and Erk2 kinases, and DNA synthesis. GFB-111 is highly potent (IC50 = 250 nM) and selective for PDGF over EGF, IGF-1, aFGF, bFGF, and HRGbeta (IC50 values > 100 microM), but inhibits VEGF-induced Flk-1 tyrosine phosphorylation and Erk1/Erk2 activation with an IC50 of 10 microM. GFB-111 treatment of nude mice bearing human tumors resulted in significant inhibition of tumor growth and angiogenesis. The results demonstrate the feasibility of designing novel growth factor-binding molecules with potent anticancer and antiangiogenic activity.  相似文献   

16.
The epidermal growth factor (EGF) receptor, which exhibits intrinsic protein tyrosine kinase activity, undergoes a rapid, intramolecular self-phosphorylation reaction following EGF activation. The primary sites of tyrosine self-phosphorylation in vivo are located in the extreme carboxyl-terminal region of the molecule, principally Tyr-1173. To test the biological and biochemical consequences of this EGF receptor self-phosphorylation, we made the mutation Tyr----Phe-1173. Membranes containing the mutated receptor exhibited an ED50 for EGF activation of tyrosine kinase activity equivalent to control receptor at both high and low substrate levels, but exhibited reduced basal and EGF-stimulated tyrosine kinase activity at low, non-saturating substrate levels. The Tyr----Phe-1173 mutant possessed high affinity EGF binding and could still self-phosphorylate other tyrosine sites in an intramolecular fashion with a low Km for ATP (200 nM), suggesting that this alteration did not grossly change receptor structure. When EGF-dependent growth of Chinese hamster ovary cells expressing comparable levels of control or mutant EGF receptor was measured, the ability of the mutant receptor to mediate cell growth in response to EGF was reduced by approximately 50%, yet both receptors exhibited a similar affinity and ED50 for EGF. These results support the concept that this self-phosphorylation site can act as a competitive/alternate substrate for the EGF receptor, and that this region of the molecule is important in modulating its maximal biological activity.  相似文献   

17.
The ability of staurosporine, a potent inhibitor of protein kinase C, to block certain cellular events initiated by 12-O-tetradecanoylphorbol-13-acetate (TPA) and epidermal growth factor (EGF) was examined. Treatment of MDA468 breast cancer cells with TPA decreases EGF binding to the cell surface and this effect is blocked by pretreatment with staurosporine with an IC50 of 30 nM. Either 10(-9) M EGF or 100 ng/ml TPA stimulated the accumulation of both EGF receptor and TGF-alpha mRNA and staurosporine (50 nM) completely abolished these mRNA accumulations. Staurosporine did not block EGF-stimulated tyrosine phosphorylation of its receptor as measured by immunoblotting with anti-phosphotyrosine antibodies. The ability of staurosporine to block the mRNA responses of either EGF or TPA suggests that these two agents have common signaling pathways and it implies a role for protein kinase C in the control of EGF receptor and TGF-alpha expression.  相似文献   

18.
19.
20.
Treatment of A431 human epidermoid cells with epidermal growth factor (EGF; 20 nM) results in decreased proliferation. This is associated with blockage of the cells in the S and/or G2 phases of the cell cycle. We found that tyrphostin, a putative tyrosine kinase inhibitor, in the range of 50 to 100 microM, partially reversed the growth-inhibitory and cell cycle changes induced by EGF. By using high-pressure liquid chromatography with electrochemical detection, we found that tyrphostin was readily incorporated into A431 cells, reaching maximal levels within 1 h. Although tyrphostin (50 to 100 microM) had no effect on high-affinity binding of EGF to its receptor in A431 cells for up to 24 h, the compound partially inhibited EGF-stimulated EGF receptor tyrosine kinase activity. However, this effect was evident only after prolonged treatment of the cells (4 to 24 h) with the drug. When the peak intracellular concentration of tyrphostin occurred (1 h), no inhibition of tyrosine kinase activity was observed. After both 1 and 24 h, tyrphostin was a less effective inhibitor of tyrosine kinase activity than the potent tumor promoter 12-O-tetradecanoyl phorbol-13-acetate, which almost completely blocked EGF receptor autophosphorylation. On the basis of our data, we hypothesize that tyrphostin is not a competitive inhibitor of the EGF receptor tyrosine kinase in intact cells and that it functions by an indirect mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号