首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
A real-time RT-PCR assay using newly designed primers was developed to analyze developmental and adult MHC mRNA expression both in skeletal muscles and single fibers. Only 4 ng of total RNA was necessary for the analysis of the relative mRNA expression of MHC genes. Different validation steps were realized concerning both specificity and sensitivity of each primer set, and linearity and efficiency of each real-time PCR amplification. Then, quantification of MHC mRNA in neonatal and adult muscles as well as in single fibers was done by the ΔCT method, with CycA gene as the reference gene. Due to a higher sensitivity than that of a competitive PCR method, we demonstrated that this assay is suitable to study very low level of MHC mRNA expression as developmental MHC in adult muscle and to quantify mRNA from very small samples.  相似文献   

7.
Screening of drug-induced mitochondrial DNA (mtDNA) depletion during early preclinical drug development is of major interest. Here we describe the establishment of a novel duplex calibrator-normalized real-time polymerase chain reaction (PCR) assay for rapid and reliable quantification of mtDNA in HepG2 cells. This assay involves quantification of an mtDNA target gene (cytochrome b) relative to a nuclear DNA (nDNA) reference gene (β-actin) in one tube. The assay was evaluated for its precision, linearity, and reproducibility, and reliable detection of mtDNA depletion was demonstrated. Using this novel real-time PCR assay, drug-induced mtDNA depletion could be accurately detected.  相似文献   

8.
9.
Kühne BS  Oschmann P 《BioTechniques》2002,33(5):1078, 1080-2, 1084 passim
Quantitative real-time or kinetic RT-PCR is increasingly used for the quantification of specific mRNA targets, especially in clinical applications. To quantify the mRNA of cytokines and their receptors, which play important roles in the pathogenesis of autoimmune diseases such as multiple sclerosis, we have developed quantitative two-step RT-PCR assays for IL-4, IL-4R, IFN-gamma, IFN-beta, and the housekeeping gene porphobilinogen deaminase (PBGD). The LightCycler system was used to quantify the copy numbers with the sequence-specific hybridization probe detection format. The quantification was carried out on the basis of standard curves generated with external homologous plasmids for each different parameter in relation to the gene expression of PBGD. Therefore, this procedure represents a relative quantification method with external standards, as the standard curves were used to obtain an absolute value for the copy numbers of the targets and the reference (PBGD). The new software version 3.5 of the LightCycler system allows the construction of a single parameter-dependent plasmid standard curve for the quantification of unknown samples from different runs. Here we demonstrate how to achieve precise and reproducible quantification, even when using measurements from different PCR runs.  相似文献   

10.
Nucleic acid quantification is a relevant issue for the characterization of mammalian recombinant cell lines and also for the registration of producer clones. Quantitative real-time PCR is a powerful tool to investigate nucleic acid levels but numerous different quantification strategies exist, which sometimes lead to misinterpretation of obtained qPCR data. In contrast to absolute quantification using amplicon- or plasmid standard curves, relative quantification strategies relate the gene of interest to an endogenous reference gene. The relative quantification methods also consider the amplification efficiency for the calculation of the gene copy number and thus more accurate results compared to absolute quantification methods are generated. In this study two recombinant Chinese hamster ovary cell lines were analysed for their transgene copy number using different relative quantification strategies. The individual calculation methods resulted in differences of relative gene copy numbers because efficiency calculations have strong impact on gene copy numbers. However, in context of comparing transgene copy numbers of two individual clones the influence of the calculation method is marginal. Therefore especially for the comparison of two cell lines with the identical transgene any of the relative qPCR methods was proven as powerful tool.  相似文献   

11.
目的:探讨大鼠血管组织血管紧张素原(angiotensinogen,AGT)低丰度mRNA表达的实时PCR定量分析方法,并将其用于检测模拟失重大鼠基底和股动脉血管组织AGT mRNA的表达.方法:提取8周模拟失重(SUS)与对照组(CON)大鼠血管组织的总RNA,进行反转录后,对目的基因AGT与内参照基因GAPDH的mRNA进行实时PCR分析.应用TaqMan-MGB探针,测出上述mRNA实时PCR反应的放大效率(E)及阈循环数Ct,再依据一定数学模型由E与Ct得出经GAPDH归一化的AGT mRNA表达变化.结果:与CON相比,SUS大鼠基底动脉组织AGT mRNA表达增加240%,而股动脉组织则降低66%.结论:本工作为定量检测大鼠血管组织低丰度mRNA表达提示了一种特异、灵敏、精确、重复性好的简便方法.  相似文献   

12.
实时荧光定量PCR的发展和数据分析   总被引:11,自引:0,他引:11  
实时荧光定量PCR技术是基因时代一项用于检测mRNA的常用技术,是临床检测和基础研究中不可缺少的重要研究方法,包括绝对定量PCR和相对定量PCR。该技术的特点是可以减少PCR后操作,在比较不同浓度的mRNA方面具有非常宽的动力学范围。我们就目前实时荧光定量PCR的发展及数据的分析进行综述。  相似文献   

13.
Current methods to determine the mRNA of the TGF-beta-isoforms, beta 1, beta 2, and beta 3, are not sensitive enough to detect small alterations in the expression levels. Therefore, we established a SYBR Green I-based real-time quantitative PCR procedure with fragment-specific standards. The advantage of gene-specific quantification is the possibility to be abstain from the need to compare results with a house-keeping gene having a different sequence and PCR efficiency. Reproducibility of the results and analytical variances of the real-time PCR assays were tested. In transdifferentiating rat hepatic stellate cells (HSC) the TGF-beta 1-mRNA was found to be the predominant isoform expressed followed by TGF-beta 3 and low amounts of TGF-beta 2-mRNA. An alteration of the TGF-beta 1,-beta 2, and -beta 3 ratio during HSC transdifferentiation could not be detected. Furthermore, the GAPDH mRNA expression varied during HSC activation, and thus is not recommended as a standard in real-time PCR quantifications.  相似文献   

14.
15.
Relative quantification in quantitative real-time RT-PCR is increasingly used to quantify gene expression changes. In general, two different relative mRNA quantification models exist: the delta-delta Ct and the efficiency-corrected Ct model. Both models have their advantages and disadvantages in terms of simplification on the one hand and efficiency correction on the other. The particular problem of RNA integrity and its effect on relative quantification in qRT-PCR performance was tested in different bovine tissues and cell lines (n = 11). Therefore different artificial and standardized RNA degradation levels were used. Currently fully automated capillary electrophoresis systems have become the new standard in RNA quality assessment. RNA quality was rated according the RNA integrity number (RIN). Furthermore, the effect of different length of amplified products and RNA integrity on expression analyses was investigated. We found significant impact of RNA integrity on relative expression results, mainly on cycle threshold (Ct) values and a minor effect on PCR efficiency. To minimize the interference of RNA integrity on relative quantification models, we can recommend to normalize gene expression by an internal reference gene and to perform an efficiency correction. Results demonstrate that innovative new quantification methods and normalization models can improve future mRNA quantification.  相似文献   

16.
17.
Environmental sampling to monitor entomopathogen titre in forest soil, a known reservoir of insect pathogens such as fungi and viruses, is important in the evaluation of conditions that could trigger epizootics and in the development of strategies for insect pest management. Molecular or PCR-based analysis of environmental samples provides a sensitive method for strain- or species-based detection, and real-time PCR, in particular, allows quantification of the organism of interest. In this study we developed a DNA extraction method and a real-time PCR assay for detection and quantification of Entomophaga maimaiga (Zygomycetes: Entomophthorales), a fungal pathogen of the gypsy moth, in the organic layer of forest soil. DNA from fungal resting spores (azygospores) in soil was extracted using a detergent and bead mill homogenization treatment followed by purification of the crude DNA extract using Sephadex–polyvinylpolypyrrolidone microcolumns. The purification step eliminated most of the environmental contaminants commonly co-extracted with genomic DNA from soil samples but detection assays still required the addition of bovine serum albumin to relieve PCR inhibition. The real-time PCR assay used primers and probe based on sequence analysis of the nuclear ribosomal ITS region of several E. maimaiga and two E. aulicae strains. Comparison of threshold cycle values from different soil samples spiked with E. maimaiga DNA showed that soil background DNA and remaining co-extracted contaminants are critical factors determining detection sensitivity. Based on our results from comparisons of resting spore titres among different forest soils, estimates were best for organic soils with comparatively high densities of resting spores.  相似文献   

18.
Here we present MethylQuant, a novel method that allows accurate quantification of the methylation level of a specific cytosine within a complex genome. This method relies on the well-established treatment of genomic DNA with sodium bisulfite, which converts cytosine into uracil without modifying 5-methyl cytosine. The region of interest is then PCR-amplified and quantification of the methylation status of a specific cytosine is performed by methylation-specific real-time PCR with SYBR Green I using one of the primers whose 3′ end discriminates between the methylation states of this cytosine. The presence of a locked nucleic acid at the 3′ end of the discriminative primer provides the specificity necessary for accurate and sensitive quantification, even when one of the methylation states is present at a level as low as 1% of the overall population. We demonstrate that accurate quantification of the methylation status of specific cytosines can be achieved in biological samples. The method is high-throughput, cost-effective, relatively simple and does not require any specific equipment other than a real-time PCR instrument.  相似文献   

19.
Pathogenic bacteria and enteric viruses can be introduced into the environment via human waste discharge. Methods for rapid detection and quantification of human viruses and fecal indicator bacteria in water are urgently needed to prevent human exposure to pathogens through drinking and recreational waters. Here we describe the development of two real-time PCR methods to detect and quantify human adenoviruses and enterococci in environmental waters. For real-time quantification of enterococci, a set of primers and a probe targeting the 23S rRNA gene were used. The standard curve generated using Enterococcus faecalis genomic DNA was linear over a 7-log-dilution series. Serial dilutions of E. faecalis suspensions resulted in a lower limit of detection (LLD) of 5 CFU/reaction. To develop real-time PCR for adenoviruses, degenerate primers and a Taqman probe targeting a 163-bp region of the adenovirus hexon gene were designed to specifically amplify 14 different serotypes of human adenoviruses, including enteric adenovirus serotype 40 and 41. The standard curve generated was linear over a 5-log-dilution series, and the LLD was 100 PFU/reaction using serial dilutions of purified adenoviral particles of serotype 40. Both methods were optimized to be applicable to environmental samples. The real-time PCR methods showed a greater sensitivity in detection of adenoviruses in sewage samples than the viral plaque assay and in detection of enterococci in coastal waters than the bacterial culture method. However, enterococcus real-time PCR overestimated the number of bacteria in chlorinated sewage in comparison with the bacterial culture method. Overall, the ability via real-time PCR to detect enterococci and adenoviruses rapidly and quantitatively in the various environmental samples represents a considerable advancement and a great potential for environmental applications.  相似文献   

20.
Adenoviruses 40 and 41 have been recognized as important etiological agents of gastroenteritis in children. A real-time PCR method (TaqMan assay) was developed for rapid quantification of adenovirus 40 (Ad40) by amplifying an 88 bp sequence from the hexon gene. To establish a quantification standard curve, a 1090 bp hexon region of Ad40 was amplified and cloned into the pGEM-T Vector. A direct correlation was observed between the fluorescence threshold cycle number (Ct) and the starting quantity of Ad40 hexon gene. The quantification was linear over 6-log units and the amplification efficiency averaged greater than 95%. Seeding studies using various environmental matrices (including sterile water, creek water, brackish estuarine water, ocean water, and secondary sewage effluent) suggest that this method is applicable to environmental samples. However, real-time PCR was sensitive to inhibitors present in the environmental samples. Lower efficiency of PCR amplification was found in secondary sewage effluent and creek waters. Application of the method to fecal contaminated waters successfully quantified the presence of Ad40. The sensitivity of the real-time PCR is comparable to the traditional nested PCR assay for environmental samples. In addition, the real-time PCR assay offers the advantage of speed and insensitivity to contamination during PCR set up. The real-time PCR assay developed in this study is suitable for quantitative determination of Ad40 in environmental samples and represents a considerable advancement in pathogen quantification in aquatic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号