首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two-spotted spider mite (Tetranychus urticae Koch) is an important pest of tomato (Lycopersicon esculentum Mill.) crops in temperate regions as this spider mite has a very large capacity for population increase and causes severe tomato yield losses. There is no described tomato cultivar fully resistant to this pest, although resistant accessions have been reported within the green-fruited tomato wild species L. pennellii (Corr.) D’Arcy and L. hirsutum Humb. & Bonpl. We observed a L. pimpinellifolium (Jusl.) Mill. accession, ‘TO-937’, which seemed to be completely resistant to mite attacks and we crossed it with the susceptible L. esculentum cultivar. ‘Moneymaker’ to obtain a family of generations consisting of the two parents, the F1, the F2, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium. This family was evaluated for mite resistance in a polyethylene greenhouse using an experimental design in 60 small complete blocks distributed along 12 double rows. Each block consisted of five F2 plants in one row and one plant of each of the two parents, the F1, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium in the adjacent row. Plants at the 10–15 leaf stage were artificially infested by putting on them two pieces of French bean leaf heavily infested with T. urticae. After two months, evaluations of infestation were made by visual observation of mite nets and leaf damage. Plants that were free of signs of mite reproduction on the top half were considered as resistant, plants with silky nets only on their basal leaves, intermediate, and plants with mite reproduction on both basal and top canopies were scored as susceptible. Dominance for resistance appeared because all the ‘To-937’, BC1 to L. pimpinellifolium, and F1 plants were resistant. Not all ‘Moneymaker’ plants behaved as susceptible because 35% of plants were intermediate. In the BC1 to L. pimpinellifolium and the F2, most plants were scored as resistant, only 7 % BC1 and 3 % F2 plants were intermediate, and a single F2 plant (0.3 %) was susceptible. With these figures, resistance seemed to be controlled by either four or two genes according to whether segregation in the BC1 or in the F2, respectively, were considered. These results could in part be explained because of appearance of negative interplot interference due to the high frequency of resistant genotypes within most of the generations. Therefore, the family was evaluated again but using a different experimental design. In the new experiment, 16 ‘TO-937’, 17 ‘Moneymaker’, 17 F1, 37 BC1 to L. pimpinellifolium, 38 BC1 to L. esculentum, and 125 F2 plants were included. Each of these test plants was grown besides a susceptible ‘Moneymaker’ auxilliary plant that served to keep mite population high and homogeneous in the greenhouse. Negative interplot interference was avoided with this design and all the ‘TO-937’, F1, and BC1 to L. pimpinellifolium plants were resistant, all ‘Moneymaker’ test plants were susceptible, and 52 % BC1 to L. esculentum and 25 % F2 plants were susceptible, which fitted very well with the expected for resistance governed by a single dominant gene. The simple inheritance mode found will favour sucessful introgression of mite resistance into commercial tomatoes from the very close relative L. pimpinellifolium.  相似文献   

2.
 Fine mapping was carried out on three putative QTLs (tentatively designated as Hd-1 to Hd-3) of five such QTLs controlling heading date in rice that had been earlier identified using an F2 population derived from a cross between a japonica variety, ‘Nipponbare’, and an indica variety, ‘Kasalath’, using progeny backcrossed with ‘Nipponbare’ as the recurrent parent. One BC3F2 and two BC3F1 plants, in which the target QTL regions were heterozygous and most other chromosomal regions were homozygous for the ‘Nipponbare’ allele, were selected as the experimental material. Self-pollinated progeny (BC3F2 and BC3F3) of the BC3F1 or BC3F2 showed continuous variation in days to heading. By means of progeny testing based on BC3F3 or BC3F4 lines, we determined the genotypes of each BC3F2 or BC3F3 individual at target QTLs. Their segregation patterns fitted Mendelian inheritance ratios. When the results obtained by RFLP analysis and progeny tests were combined, Hd-1, Hd-2 and Hd-3 were mapped precisely on chromosomes 6, 7 and 6, respectively, of a rice RFLP linkage map. The results demonstrated that QTLs can be treated as Mendelian factors. Moreover, these precise locations were in good agreement with the regions estimated by QTL analysis of the initial F2 population, demonstrating the high reliability of QTL mapping using a high-density linkage map. Received: 5 November 1997 / Accepted: 10 February 1998  相似文献   

3.
 The objective of this study was to detect the presence of alien chromatin in intergeneric hybrids of durum wheat (Triticum turgidum, 2n=4x=28; AABB genomes) with the perennial grass Thinopyrum junceiforme (2n=4x=28; J1J1J2J2) using RAPD markers. The first step was to identify amplification of species-specific DNA markers in the parental grass species and durum wheat cultivars. Initially, the genomic DNA of five grass species (Thinopyrum junceiforme, Th. bessarabicum, Lophopyrum elongatum, Leymus karataviensis and Elytrigia pycnantha) and selected durum cultivars (‘Langdon’, ‘Durox’, ‘Lloyd’, ‘Monroe’, and ‘Medora’) was screened with 40 oligonucleotide primers (nano-mers). Three oligonucleotides that amplified DNA fragments specific to a grass species or to a durum cultivar were identified. Primer PR21 amplified DNA fragments specific to each of the five durum cultivars, and primers PR22 and PR23 amplified fragments specific to each of the grass species. Intergeneric hybrids between the durum cultivars ‘Langdon’, ‘Lloyd’ and ‘Durox’ and Th. junceiforme, and their backcross (BC) progeny were screened with all 40 primers. Six primers amplified parent-specific DNA fragments in the F1 hybrids and their BC1 progeny. Three primers, PR22, PR23 and PR41, that amplified Th. junceiforme DNA fragments in both F1 and BC1 were further analyzed. The presence of an amplified 1.7-kb Th. junceiforme DNA fragment in the F1 hybrids and BC1 progeny was confirmed using Southern analysis by hybridization with both Th. junceiforme genomic DNA and Th. junceiforme DNA amplified with primer PR41. With the exception of line BC1F2 no. 5, five selfed progeny of BC1 and a BC2 of line 3 (BC1F2 no. 3בLloyd’) from a cross of ‘Lloyd’×Th. junceiforme showed the presence of the 1.7-kb DNA fragment. All selfed BC1 and BC2 lines retained the 600-bp fragment that was confirmed after hybridization with Th. junceiforme DNA amplified with primer PR22. Other experiments using RFLP markers also showed the presence of up to seven Th. junceiforme DNA fragments in the F1 hybrids and their BC progeny after hybridization with Th. junceiforme DNA amplified with primer PR41. These studies show the usefulness of molecular markers in detecting alien chromatin/DNA fragments in intergeneric hybrids with durum wheat. Received: 21 November 1996 / Accepted: 21 March 1997  相似文献   

4.
The incompatibility between the wild species N. africana Merxm. and the cultivated species N. tabacum has been overcome by in vitro techniques. Underdeveloped F0 seeds, placed on MS medium with supplements, produced plants which upon reaching the stage of anthesis proved to be completely sterile. Female sterility of F1 hybrids was overcome by applying tissue culture methods. Explants of stem parenchyma were grown in vitro. In every passage investigations were made of their callus production, organogenesis and cell polyploidization. The regenerants showed a great diversity in their morphological and cytological characters. Pollination of the R1 plants (N. africana × N. tabacum) with N. tabacum produced normally seeded capsules. BC1 plants were male sterile. The male sterility of the first backcross generation was preserved in BC2 and BC3, proving its cytoplasmic origin.  相似文献   

5.
A major QTL for resistance to Gibberella stalk rot in maize   总被引:1,自引:0,他引:1  
Fusarium graminearum Schwabe, the conidial form of Gibberella zeae, is the causal fungal pathogen responsible for Gibberella stalk rot of maize. Using a BC1F1 backcross mapping population derived from a cross between ‘1145’ (donor parent, completely resistant) and ‘Y331’ (recurrent parent, highly susceptible), two quantitative trait loci (QTLs), qRfg1 and qRfg2, conferring resistance to Gibberella stalk rot have been detected. The major QTL qRfg1 was further confirmed in the double haploid, F2, BC2F1, and BC3F1 populations. Within a qRfg1 confidence interval, single/low-copy bacterial artificial chromosome sequences, anchored expressed sequence tags, and insertion/deletion polymorphisms, were exploited to develop 59 markers to saturate the qRfg1 region. A step by step narrowing-down strategy was adopted to pursue fine mapping of the qRfg1 locus. Recombinants within the qRfg1 region, screened from each backcross generation, were backcrossed to ‘Y331’ to produce the next backcross progenies. These progenies were individually genotyped and evaluated for resistance to Gibberella stalk rot. Significant (or no significant) difference in resistance reactions between homozygous and heterozygous genotypes in backcross progeny suggested presence (or absence) of qRfg1 in ‘1145’ donor fragments. The phenotypes were compared to sizes of donor fragments among recombinants to delimit the qRfg1 region. Sequential fine mapping of BC4F1 to BC6F1 generations enabled us to progressively refine the qRfg1 locus to a ~500-kb interval flanked by the markers SSR334 and SSR58. Meanwhile, resistance of qRfg1 to Gibberella stalk rot was also investigated in BC3F1 to BC6F1 generations. Once introgressed into the ‘Y331’ genome, the qRfg1 locus could steadily enhance the frequency of resistant plants by 32–43%. Hence, the qRfg1 locus was capable of improving maize resistance to Gibberella stalk rot.  相似文献   

6.
Trifolium ambiguum M. Bieb and T. repens L. are taxonomically related but very difficult to cross. The rare hybrids so far reported between these two species were obtained only by embryo culture. This difficulty has been overcome in the present research by the creation of a “fertile bridge” between T. ambiguum and T. repens. Characters of interest can now be transferred from T. ambiguum to T. repens by using this “fertile bridge” without the use of sophisticated techniques. An array of backcross progenies was generated from crosses between a T. ambiguum×T. repens F1 hybrid (8x H-435) and its parental species. The 8x hybrid was cross-fertile only with T. repens and resulted in 145 seeds from 1578 reciprocal crosses. Eleven of nineteen initially grown BC1F1 plants were all hexaploid with an average pollen stainability of 41.6%. A high frequency of multivalents at metaphase-I indicated that both autosyndetic and allosyndetic pairing occurred. Backcrosses of 6x BC1F1 plants to T. repens resulted in 5x BC2F1 plants with an average pollen stainability of 59.3%. On the other hand, 6x BC1F1×6x T. ambiguum crosses did not produce any seed and only two pentaploid plants were obtained from 6x BC1F1×4x T. ambiguum crosses. The difficulty encountered in generating 6x backcross progeny with 6x T. ambiguum was overcome by intercrossing the 6x BC1F1 plants and producing 6x BC1F2 plants with an average pollen stainability of 65.8%. One of these 6x BC1F2 plants was cross-compatible as a female with 6x T. ambiguum and resulted in CBC2 plants that were all cross-compatible with 6x T. ambiguum. The 6x BC1F2 plants are likely to be superior to 6x BC1F1 progeny, as they have exhibited better expression of the combined rhizomatous and stoloniferous growth habit, improved fertility, more frequent nodal rooting and heavier nodulation. Consequently, the 6x BC1F2 plants can either be used directly in the selection programme or as a “fertile bridge” between the two parental species. The present work has resulted in the development of a series of fertile hybrids by the manipulation of chromosome numbers, combining the agronomic characteristics of the parent species in varying genome balances and at a range of ploidy levels. It is concluded that the initial sterility of the primary interspecific hybrids need not be a barrier to successful inter-breeding. Received: 2 August 1996 / Accepted: 4 April 1997  相似文献   

7.
 Quantitative trait loci (QTL) controlling the regeneration ability of rice seed callus were detected using 245 RFLP markers and 98 BC1F5 lines derived from two varieties, ‘Nipponbare’ and ‘Kasalath’. Regeneration ability was evaluated by two indices: average number of regenerated shoots per callus (NRS) and regeneration rate (RR). The BC1F5 lines showed continuous segregation for both indices. Five putative QTL for NRS (tentatively named qRg1, qRg2, qRg4a, qRg4b and qRg4c) located on chromosomes 1, 2 and 4 were detected. Digenic interaction among these detected QTL was not significant (P<0.01). Among the five QTL detected, four ‘Kasalath’ alleles and one ‘Nipponbare’ allele increased NRS. According to an estimate based on the nearest marker loci, the five QTL accounted for 38.5% of the total phenotypic variation of the BC1F5 lines. For RR, four putative QTL were detected on chromosomes 2 and 4, and all of these were in the same chromosomal regions as the NRS QTL. The four RR QTL accounted for 32.6% of the total phenotypic variation. Received: 7 November 1996 / Accepted: 25 April 1997  相似文献   

8.
Summary Oryza minuta J. S. Presl ex C. B. Presl is a tetraploid wild rice with resistance to several insects and diseases, including blast (caused by Pyricularia grisea) and bacterial blight (caused by Xanthomonas oryzae pv. oryzae). To transfer resistance from the wild species into the genome of cultivated rice (Oryza sativa L.), backcross progeny (BC1, BC2, and BC3) were produced from interspecific hybrids of O. sativa cv IR31917-45-3-2 (2n=24, AA genome) and O. minuta Acc. 101141 (2n=48, BBCC genomes) by backcrossing to the O. sativa parent followed by embryo rescue. The chromosome numbers ranged from 44 to 47 in the BC1 progeny and from 24 to 37 in the BC2 progeny. All F1 hybrids were resistant to both blast and bacterial blight. One BC1 plant was moderately susceptible to blast while the rest were resistant. Thirteen of the 16 BC2 progeny tested were resistant to blast; 1 blast-resistant BC2, plant 75-1, had 24 chromosomes. A 3 resistant: 1 susceptible segregation ratio, consistent with the action of a major, dominant gene, was observed in the BC2F2 and BC2F3 generations. Five of the BC1 plants tested were resistant to bacterial blight. Ten of the 21 BC2 progeny tested were resistant to Philippine races 2, 3, and 6 of the bacterial blight pathogen. One resistant BC2, plant 78-1, had 24 chromosomes. The segregation of reactions of the BC2F2, BC2F3, and BC2F4 progenies of plant 78-1 suggested that the same or closely linked gene(s) conferred resistance to races 2, 3, 5, and 6 of the bacterial blight pathogen from the Philippines.  相似文献   

9.
Photoperiod-thermo-sensitive genic male sterile (PTGMS) rice exhibits a number of desirable traits for hybrid rice production. The cloning genes responsible for PTGMS and those elucidating male sterility mechanisms and reversibility to fertility would be of great significance to provide a foundation to develop new male sterile lines. Guangzhan63S, a PTGMS line, is one of the most widely used indica two-line hybrid rice breeding systems in China. In this study, genetic analysis based on F2 and BC1F2 populations derived from a cross between Guangzhan63S and 1587, determined a single recessive gene controls male sterility in Guangzhan63S. Molecular marker techniques combined with bulked-segregant analysis (BSA) were used and located the target gene (named ptgms2-1) between two SSR markers RM12521 and RM12823. Fine mapping of the ptgms2-1 locus was conducted with 45 new Insertion–Deletion (InDel) markers developed between the RM12521 and RM12823 region, using 634 sterile individuals from F2 and BC1F2 populations. Ptgms2-1 was further mapped to a 50.4 kb DNA fragment between two InDel markers, S2-40 and S2-44, with genetic distances of 0.08 and 0.16 cM, respectively, which cosegregated with S2-43 located on the AP004039 BAC clone. Ten genes were identified in this region based on annotation results from the RiceGAAS system. A nuclear ribonuclease Z gene was identified as the candidate for the ptgms2-1 gene. This result will facilitate cloning the ptgms2-1 gene. The tightly linked markers for the ptgms2-1 gene locus will further provide a useful tool for marker-assisted selection of this gene in rice breeding programs.  相似文献   

10.
Epistasis is considered to be a primary genetic basis of hybrid breakdown. We found novel epistatic genes causing hybrid breakdown in an intraspecific cross of cultivated rice (Oryza sativa L.). F2 progeny derived from a cross between a Japonica variety, Asominori, and an Indica variety, IR24, showed segregation of high sterility for seeds, even though the reciprocal F1 hybrids showed about 60% seed fertility. Backcross populations (BC3F2, BC3F3), obtained from repeated backcrossing with Asominori, showed the segregation of causal genes in a simple Mendelian fashion. Using these populations, we identified that this sterility was hybrid breakdown caused by interaction among three nuclear genes distributed on the both parental genomes. These new genes, designated as hsa1, hsa2, and hsa3, were found to be involved in female gamete development by histological examination. The Indica parent IR24 has a sterile allele, hsa1-IR, which was located at near RFLP marker G148 on chromosome 12, whereas the Japonica parent Asominori has two sterile alleles, hsa2-As on chromosome 8 (close to G104) and hsa3-As on chromosome 9 (close to RM285). Female gametes carrying the hsa1-IR, hsa2-As, and hsa3-As alleles aborted in hsa1-IR homozygous plant, leading to seed sterility and selective elimination of the specific allelic combination. This study provides direct evidence that hybrid breakdown is attributed to epistatic interaction of genes from both parents and suggests that complicated mechanisms has been developed for hybrid breakdown during the evolution of rice.  相似文献   

11.
 Low-temperature-sensitive sterility (LTSS) has become one of the major obstacles in indica-japonica hybrid rice breeding. In this study, we determined, using RFLP markers, the genetic basis of LTSS in two populations derived from crosses between indica and japonica parents, the BC1F1 of 3037/02428//3037 and the F2 of 3037/02428. The fertility segregation in the two populations under low-temperature conditions was used as a measurement of the temperature sensitivity of the various genotypes in the populations. A RFLP survey of bulked extremes from the BC1F1 population identified three genomic regions, two on chromosome 1 and one on chromosome 12, that were likely to contain genes for LTSS (or Ste loci). One-way ANOVA and QTL analysis using a total of 19 markers from these three genomic regions resolved three Ste loci in the BC1F1 population and two Ste loci in the F2 population. On the basis of chromosomal location these loci were distinct from those governing wide-compatibility identified in previous studies. Two- and three-way ANOVA showed that these loci acted essentially independent of each other in conditioning LTSS. The main mode of gene action was an interaction between the indica and the japonica alleles within each locus. For each respective locus this resulted in a drastic fertility reduction in the heterozygote state relative to the homozygote state. The results have significant implications in indica-japonica hybrid rice breeding programs. Received : 10 April 1996 / Accepted: 2 June 1997  相似文献   

12.
 Sunflower genotypes with increased levels of palmitic acid (C16 : 0) in the seed oil could be useful for food and industrial applications. The objective of the present study was to determine the inheritance of the high C16 : 0 content in the sunflower mutant line CAS-5 (>25% of the total oil fatty acids). This mutant was reciprocally crossed with the lines HA-89 (5.7% C16 : 0) and BSD-2-691 (5.4% C16 : 0), the latter being the parental line from which CAS-5 was isolated. No maternal effect for the C16 : 0 content was observed from the analysis of F1 seeds in any of the crosses. The inheritance study of the C16 : 0 content in F1, F2 and BC1F1 seeds from the crosses of CAS-5 with its parental line BSD-2-691 indicated that the segregation fitted a model of two alleles at one locus with partial dominance for the low content. The analysis of the fatty acid composition in the F2 populations from the crosses with HA-89 revealed a segregation fitting a ratio 19 : 38 : 7 for low (<7.5%), middle (7.5–15%), and high (>25%) C16 : 0 content, respectively. This segregation was explained on the basis of three loci (P1, P2, P3) each having two alleles showing partial dominance for low content. The genotypes with a high C16 : 0 content were homozygous for the recessive allele p1 and for at least one of the other two recessive alleles, p2 or p3. This model was further confirmed with the analysis of the F3 and the BC1F1 generations. It was concluded that both the recessive alleles p2 and p3 were already present in the BSD-2-691 line, the allele p1 being the result of a mutation from P1. This genetic study will facilitate breeding strategies associated with the incorporation of the high C16 : 0 trait into agronomically acceptable sunflower hybrids. Received: 30 March 1998 / Accepted: 13 August 1998  相似文献   

13.
 Genetic and cytological studies were conducted with a new male-sterile, female-fertile soybean [Glycine max (L.) Merr.] mutant. This mutant was completely male sterile and was inherited as a single-recessive gene. No differences in female or male gamete transmission of the recessive allele were observed between reciprocal cross-pollinations in the F1 or F2 generations. This mutant was not allelic to any previously identified soybean genic male-sterile mutants: ms1, ms2, ms3, ms4, ms5, or ms6. No linkage was detected between sterility and flower color (W1 locus), or between sterility and pubescence color (T1 locus). Light microscopic and cytological observations of microsporogenesis in fertile and sterile anthers were conducted. The structure of microspore mother cells (MMC) in male-sterile plants was identical to the MMCs in male-fertile plants. Enzyme extraction analyses showed that there was no callase activity in male-sterile anthers, and this suggests that sterility was caused by retention of the callose walls, which normally are degraded around tetrads at the late tetrad stage. The tapetum from male-sterile anthers also showed abnormalities at the tetrad stage and later stages, which were expressed by an unusual formation of vacuoles, and by accumulation of densely staining material. At maturity, anthers from sterile plants were devoid of pollen grains. Received: 13 May 1996 / Revision accepted: 19 August 1996  相似文献   

14.
Interspecific crossing of the African indigenous rice Oryza glaberrima with Oryza sativa cultivars is hindered by crossing barriers causing 100% spikelet sterility in F1 hybrids. Since hybrids are partially female fertile, fertility can be restored by back crossing (BC) to a recurrent male parent. Distinct genetic models on spikelet sterility have been developed predicting, e.g., the existence of a gamete eliminator and/or a pollen killer. Linkage of sterility to the waxy starch synthase gene and the chromogen gene C, both located on chromosome 6, have been demonstrated. We selected a segregating BC2F3 population of semi-sterile O. glaberrima × O. sativa indica hybrid progenies for analyses with PCR markers located at the respective chromosome-6 region. These analyses revealed that semi-sterile plants were heterozygous for a marker (OSR25) located in the waxy promoter, whereas fertile progenies were homozygous for the O. glaberrima allele. Adjacent markers showed no linkage to spikelet sterility. Semi-sterility of hybrid progenies was maintained at least until the F4 progeny generation, suggesting the existence of a pollen killer in this plant material. Monitoring of reproductive plant development showed that spikelet sterility was at least partially due to an arrest of pollen development at the microspore stage. In order to address the question whether genes responsible for F1 sterility in intraspecific hybrids (O. sativa indica × japonica) also cause spikelet sterility in interspecific hybrids, crossings with wide compatibility varieties (WCV) were performed. WCV accessions possess "neutral" S-loci (Sn) improving fertility in intraspecific hybrids. This experiment showed that the tested Sn-loci had no fertility restoring effect in F1 interspecific hybrids. Pollen development was completely arrested at the microspore stage and grains were never obtained after selfing. This suggests that distinct or additional S-loci are responsible for sterility of O. glaberrima × O. sativa hybrids.Communicated by H.C. Becker  相似文献   

15.
Ketan Nangka, the donor of wide compatibility genes, showed sterility when crossed to Tuanguzao, a landrace rice from Yunnan province, China. Genetic and cytological analyses revealed that the semi-sterility was primarily caused by partial abortion of the embryo sac. Genome-wide analysis of the linkage map constructed from the backcross population of Tuanguzao/Ketan Nangka//Ketan Nangka identified two independent loci responsible for the hybrid sterility located on chromosomes 2 and 5, which explained 18.6 and 20.1% of phenotypic variance, respectively. The gene on chromosome 5 mapped to the previously reported sterility gene S31(t), while the gene on chromosome 2, a new hybrid sterility gene, was tentatively designated as S32(t). The BC1F2 was developed for further confirmation and fine mapping of S32(t). The gene S32(t) was precisely mapped to the same region as that detected in the BC1F1 but its position was narrowed down to an interval of about 1.9 cM between markers RM236 and RM12475. By assaying the recombinant events in the BC1F2, S32(t) was further narrowed down to a 64 kb region on the same PAC clone. Sequence analysis of this fragment revealed seven predicted open reading frames, four of which encoded known proteins and three encoded putative proteins. Further analyses showed that wide-compatibility variety Dular had neutral alleles at loci S31(t) and S32(t) that can overcome the sterilities caused by these two genes. These results are useful for map-based cloning of S32(t) and for marker-assisted transferring of the neutral allele in hybrid rice breeding.  相似文献   

16.
The level of transgene expression in crop × weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T1 single-locus insert GFP/Bacillus thuringiensis (Bt) transgenic canola (Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC1F1, BC2F1) were produced by backcrossing various GFP/Bt transgenic canola (B. napus, cv Westar) and birdseed rape (Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC2F2 Bulk) were generated by crossing BC2F1 individuals in the presence of a pollinating insect (Musca domestica L.). The ploidy of plants in the BC2F2 Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F1 hybrid generations contained 95–97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15–29% presence in the BC2F2 Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC2F2 Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid generations (F1, BC1F1 and BC2F1). These data demonstrate that the formation of homozygous individuals within hybrid populations increases the average level of transgene expression as generations progress. This phenomenon must be considered in the development of risk-management strategies.Communicated by J. Dvorak  相似文献   

17.
Summary The C-banding pattern of the satellited chromosomes in Thinopyrum distichum and Triticum durum was established. Both T. durum and Th. distichum contained two pairs of satellited chromosomes, which could be distinguished from one another. In the amphiploids [T. durum×Th. distichum (2x=56)] and in the backcross T. durum/(T. durum×Th. distichum)2, BC1F3, and BC1F5 (2n = 42) the satellite was visible on only 1B and 6B of T. durum. The vector pTa 71 containing the rRNA gene from wheat hybridized to two pairs of chromosomes (four hybridization sites) in T. durum and Th. distichum, to eight sites in the amphiploid hybrid (2n=56), and to six sites in the backcross populations BC1F1. BC1F3, and BC1F5 (2n=42). The two satellite pairs in Th. distichum could be distinguished by the chromosomal location of the rRNA site (median or subterminal) and by the centromere position. One copy of each pair was present in the BC1F1, but in the BC1F3 and BC1F5 populations the pair with the subterminal location of rRNA genes was absent. Silver nitrate staining indicated that the rRNA genes of T. durum did not completely suppress those of Th. distichum. The octoploid amphiploid (2n = 56) contained a maximum of four large and four small nucleoli and the hexaploid BC1s (2n=42), four large and two small nucleoli.  相似文献   

18.
 The objective of the current research was to generate a ploidy series of backcross progenies from a single triploid (2n=3x=24) Trifolium repens×T. nigrescens F1 hybrid (3x H-6909-5). The 3x H-6909-5 plant was highly sterile and produced no seeds from approximately 3000 reciprocal backcrosses to both parental species. Chromosome doubling by an in vitro colchicine method resulted in a marked increase in fertility. Pollen stainability was increased from 9.9% in 3x H-6909-5 to an average of 89.2% (range 87.7–90.9%) in the three chromosome-doubled 6x H-6909-5 plants. Subsequent backcrosses of 6x H-6909-5 and interbreeding of backcross derivatives resulted in an array of fertile hybrids at 4x, 5x and 7x levels and some aneuploids. The occurrence of 7x BC1F1 progeny from the T. repens×6x H-6909-5 (4x×6x) cross is the first unequivocal evidence of functional female 2n gametes in white clover. Meiotic pairing in F1 and BC1F1 progeny indicated the presence of allosyndetic pairing, suggesting that genetic exchange between the two species is possible. Received: 17 October 1996 / Accepted: 8 November 1996  相似文献   

19.
The stele (root vascular cylinder) in plants plays an important role in the transport of water and nutrients from the root to the shoot. A quantitative trait locus (QTL) on rice chromosome 9 that controls stele transversal area (STA) was previously detected in an F3 mapping population derived from a cross between the lowland cultivar ‘IR64’, with a small STA, and the upland cultivar ‘Kinandang Patong’, with a large STA. To identify the gene(s) underlying this QTL, we undertook fine mapping of the locus. We screened eight plants from BC2F3 lines in which recombination occurred near the QTL. Progeny testing of BC2F4 plants was used to determine the genotype classes for the QTL in each BC2F3 line. Accordingly, the STA QTL Sta1 (Stele Transversal Area 1) was mapped between the InDel markers ID07_12 and ID07_14. A candidate genomic region for Sta1 was defined more precisely between markers RM566 and RM24334, which delimit a 359-kb interval in the reference cultivar ‘Nipponbare’. A line homozygous for the ‘Kinandang Patong’ allele of Sta1 had an STA approximately 28.4% larger than that of ‘IR64’. However, Sta1 did not influence maximum or total root length, suggesting that this QTL specifically controls STA.  相似文献   

20.
The functional male sterility controlled by ps gene proved to be a useful tool in hybrid tomato varieties breeding in Poland. The climat conditions such as excessive temperature and high humidity have a bad effect on the expression and stability of functional male sterility. Using the RAPD methods we have identified two RAPD markers linked to the ps gene. The markers OPW 131230 and OPAX 10780 were generated by 5′CACAGCGACA 3′ and 5′CCAGGCTGAC 3′ decamers respectively in F2 population of combination 24/29 × G-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号