首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organisation of the Sinapis alba genome, comprising 12 linkage groups (n = 12), was compared with the Brassicaceae ancestral karyotype (AK) genomic blocks previously described in other crucifer species. Most of the S. alba genome falls into conserved triplicated genomic blocks that closely match the AK-defined genomic blocks found in other crucifer species including the A, B, and C genomes of closely related Brassica species. In one instance, an S. alba linkage group (S05) was completely collinear with one AK chromosome (AK1), the first time this has been observed in a member of the Brassiceae tribe. However, as observed for other members of the Brassiceae tribe, ancestral genomic blocks were fragmented in the S. alba genome, supporting previously reported comparative chromosome painting describing rearrangements of the AK karyotype prior to the divergence of the Brassiceae from other crucifers. The presented data also refute previous phylogenetic reports that suggest S. alba was more closely related to Brassica nigra (B genome) than to B. rapa (A genome) and B. oleracea (C genome). A comparison of the S. alba and Arabidopsis thaliana genomes revealed many regions of conserved gene order, which will facilitate access to the rich genomic resources available in the model species A. thaliana for genetic research in the less well-resourced crop species S. alba.  相似文献   

2.
The angiosperm family Brassicaceae contains both the research model Arabidopsis (Arabidopsis thaliana) and the agricultural genus Brassica. Comparative genomics in the Brassicaceae has largely focused on direct comparisons between Arabidopsis and the species of interest. However, the reduced genome size and chromosome number (n = 5) of Arabidopsis complicates comparisons. Arabidopsis shows extensive genome and chromosome reshuffling compared to its close relatives Arabidopsis lyrata and Capsella rubella, both with n = 8. To facilitate comparative genomics across the Brassicaceae we recently outlined a system of 24 conserved chromosomal blocks based on their positions in an ancestral karyotype of n = 8, rather than by their position in Arabidopsis. In this report we use this system as a tool to understand genome structure and evolution in Boechera stricta (n = 7). B. stricta is a diploid, sexual, and highly self-fertilizing species occurring in mostly montane regions of western North America. We have created an F(2) genetic map of B. stricta based on 192 individuals scored at 196 microsatellite and candidate gene loci. Single-nucleotide polymorphism genotyping of 94 of the loci was done simultaneously using an Illumina bead array. The total map length is 725.8 cM, with an average marker spacing of 3.9 cM. There are no gaps greater than 19.3 cM. The chromosomal reduction from n = 8 to n = 7 and other genomic changes in B. stricta likely involved a pericentric inversion, a chromosomal fusion, and two reciprocal translocations that are easily visualized using the genomic blocks. Our genetic map will facilitate the analysis of ecologically relevant quantitative variation in Boechera. Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers DU 667459 to DU 708532.  相似文献   

3.
Comparative genomics provides insight into the evolutionary dynamics that shape discrete sequences as well as whole genomes. To advance comparative genomics within the Brassicaceae, we have end sequenced 23,136 medium-sized insert clones from Boechera stricta, a wild relative of Arabidopsis (Arabidopsis thaliana). A significant proportion of these sequences, 18,797, are nonredundant and display highly significant similarity (BLASTn e-value < or = 10(-30)) to low copy number Arabidopsis genomic regions, including more than 9,000 annotated coding sequences. We have used this dataset to identify orthologous gene pairs in the two species and to perform a global comparison of DNA regions 5' to annotated coding regions. On average, the 500 nucleotides upstream to coding sequences display 71.4% identity between the two species. In a similar analysis, 61.4% identity was observed between 5' noncoding sequences of Brassica oleracea and Arabidopsis, indicating that regulatory regions are not as diverged among these lineages as previously anticipated. By mapping the B. stricta end sequences onto the Arabidopsis genome, we have identified nearly 2,000 conserved blocks of microsynteny (bracketing 26% of the Arabidopsis genome). A comparison of fully sequenced B. stricta inserts to their homologous Arabidopsis genomic regions indicates that indel polymorphisms >5 kb contribute substantially to the genome size difference observed between the two species. Further, we demonstrate that microsynteny inferred from end-sequence data can be applied to the rapid identification and cloning of genomic regions of interest from nonmodel species. These results suggest that among diploid relatives of Arabidopsis, small- to medium-scale shotgun sequencing approaches can provide rapid and cost-effective benefits to evolutionary and/or functional comparative genomic frameworks.  相似文献   

4.
5.
The cross between Arabidopsis thaliana and the closely related species Arabidopsis arenosa results in postzygotic hybrid incompatibility, manifested as seed death. Ecotypes of A. thaliana were tested for their ability to produce live seed when crossed to A. arenosa. The identified genetic variation was used to map quantitative trait loci (QTLs) encoded by the A. thaliana genome that affect the frequency of postzygotic lethality and the phenotypes of surviving seeds. Seven QTLs affecting the A. thaliana component of this hybrid incompatibility were identified by crossing a Columbia × C24 recombinant inbred line population to diploid A. arenosa pollen donors. Additional epistatic loci were identified based on their pairwise interaction with one or several of these QTLs. Epistatic interactions were detected for all seven QTLs. The two largest additive QTLs were subjected to fine-mapping, indicating the action of at least two genes in each. The topology of this network reveals a large set of minor-effect loci from the maternal genome controlling hybrid growth and viability at different developmental stages. Our study establishes a framework that will enable the identification and characterization of genes and pathways in A. thaliana responsible for hybrid lethality in the A. thaliana × A. arenosa interspecific cross.  相似文献   

6.
Due to their relatedness to Arabidopsis thaliana (Arabidopsis), the cultivated Brassica species represent the first group of crops with which to evaluate comparative genomics approaches to understanding biological processes and manipulating traits. We have constructed a high-quality binary BAC library (JBo) from genomic DNA of Brassica oleracea var. alboglabra, in order to underpin such investigations. Using the Arabidopsis genome sequence and clones from the JBo library, we have analysed aspects of gene conservation and microsynteny between a 222 kb region of the genome of Arabidopsis and homoeologous segments of the genome of B. oleracea. All 19 predicted genes tested were found to hybridize to clones in the JBo library, indicating a high level of gene conservation. Further analyses and physical mapping with the BAC clones identified allowed us to construct clone contig maps and analyse in detail the gene content and organization in the set of paralogous segments identified in the genome of B. oleracea. Extensive divergence of gene content was observed, both between the B. oleracea paralogous segments and between them and their homoeologous segment within the genome of Arabidopsis. However, the genes present show highly conserved collinearity with their orthologues in the genome of Arabidopsis. We have identified one example of a Brassica gene in a non-collinear position and one rearrangement. Some of the genes not present in the discernible homoeologous regions appear to be located elsewhere in the B. oleracea genome. The implications of our findings for comparative map-based cloning of genes from crop species are discussed.  相似文献   

7.
Comparative genomics in the Brassicaceae: a family-wide perspective   总被引:1,自引:0,他引:1  
Comparative genomics of Arabidopsis relatives has great potential to improve our understanding of molecular function and evolutionary processes. Recent studies of phylogenetic relationships within Brassicaceae and the publication of a new tribal classification scheme provide an important framework for comparative genomics research. Comparative linkage mapping and chromosome painting in the close relatives of Arabidopsis have inferred an ancestral karyotype of these species. In addition, comparative mapping to Brassica has identified genomic blocks that have been maintained since the divergence of the Arabidopsis and Brassica lineages. Several analyses of conserved non-coding regions have identified putative cis-regulatory sequences, and have highlighted the need for comparative sequencing at greater evolutionary distances. The development of new model species with novel physiological and ecological traits allows analysis of phenotypes that are not available in A. thaliana. Looking towards the future, we suggest a prioritized research agenda for comparative genomics in the Brassicaceae.  相似文献   

8.
Characterization of the genome of Arabidopsis thaliana   总被引:35,自引:0,他引:35  
The small crucifer Arabidopsis thaliana has many useful features as an experimental organism for the study of plant molecular biology. It has a four-week life-cycle, only five chromosomes and a genome size less than half that of Drosophila. To characterize the DNA sequence organization of this plant, we have randomly selected 50 recombinant lambda clones containing inserts with an average length of 12,800 base-pairs and analyzed their content of repetitive and unique DNA by various genome blot, restriction digestion and RNA blot procedures. The following conclusions can be drawn. The DNA represented in this random sample is composed predominantly of single-copy sequences. This presumably reflects the organization of the Arabidopsis genome as a whole and supports prior conclusions reached on the basis of kinetics of DNA reassociation. The DNA that encodes the ribosomal RNAs constitutes the only major class of cloned nuclear repetitive DNA. It consists of approximately 570 tandem copies of a heterogeneous 9900-base-pair repeat unit. There is an average of approximately 660 copies of the chloroplast genome per cell. Therefore, the chloroplast genome constitutes the major component of the repetitive sequences found in A. thaliana DNA made from whole plants. The inner cytosine residue in the sequence C-C-G-G is methylated more often than the outer in the tandem ribosomal DNA units, whereas very few differences in the methylation state of these two cytosine residues are detected in unique sequences.  相似文献   

9.
10.
Pedras MS  Adio AM 《Phytochemistry》2008,69(4):889-893
Investigation of phytoalexin production using abiotic elicitation showed that the phytoalexin rapalexin A was produced by both Thellungiella halophila and Arabidopsis thaliana, but while A. thaliana produced camalexin, T. halophila produced wasalexins A and B and methoxybrassenin B. Considering that the genome of T. halophila is being sequenced currently and that the wasalexin pathway present in T. halophila is expected to involve a number of genes also present in Brassica species, our discovery should facilitate the isolation of genes involved in biosynthetic pathways of phytoalexins of the most economically important crucifer species.  相似文献   

11.
Jackson SA  Cheng Z  Wang ML  Goodman HM  Jiang J 《Genetics》2000,156(2):833-838
Comparative genome studies are important contributors to our understanding of genome evolution. Most comparative genome studies in plants have been based on genetic mapping of homologous DNA loci in different genomes. Large-scale comparative physical mapping has been hindered by the lack of efficient and affordable techniques. We report here the adaptation of fluorescence in situ hybridization (FISH) techniques for comparative physical mapping between Arabidopsis thaliana and Brassica rapa. A set of six bacterial artificial chromosomes (BACs) representing a 431-kb contiguous region of chromosome 2 of A. thaliana was mapped on both chromosomes and DNA fibers of B. rapa. This DNA fragment has a single location in the A. thaliana genome, but hybridized to four to six B. rapa chromosomes, indicating multiple duplications in the B. rapa genome. The sizes of the fiber-FISH signals from the same BACs were not longer in B. rapa than those in A. thaliana, suggesting that this genomic region is duplicated but not expanded in the B. rapa genome. The comparative fiber-FISH mapping results support that chromosomal duplications, rather than regional expansion due to accumulation of repetitive sequences in the intergenic regions, played the major role in the evolution of the B. rapa genome.  相似文献   

12.
Molecular Systematics and Evolution of Arabidopsis and Arabis   总被引:6,自引:0,他引:6  
Abstract: We provide a phylogenetic analysis of the genera Arabidopsis and Arabis based on nuclear ribosomal DNA sequences. We show that traditional taxonomical concepts within tribe Ara-bideae, which includes these genera, are highly artificial. Arabis and Arabidopsis are paraphyletic and consist of several different independent lineages. The genus Capsella, originally placed in tribe Lepideae, is related to North American Arabis and the Arabidopsis thaliana lineage. Other genera, including East Asian Yin-shania, North American Halimolobus, cosmopolitan Barbarea and Cardamine, and European Aubrieta are positioned among different Arabis lineages. One Arabis species, Arabis pauciflora, is only distantly related to tribe Arabideae. Base chromosome number reduction from n = 8 to n = 5 to 7 occurred several times, suggesting that lower base chromosome numbers than n = 8 are derived in tribe Arabideae. Current knowledge on the evolution and systematics of the genera Arabis and Arabidopsis and relationships within the mustard family are summarized and discussed in the light of convergent evolution and transfer of knowledge from Arabidopsis thaliana as a molecular model plant to other species of the Cruciferae.  相似文献   

13.
Evolution of genome size in Brassicaceae   总被引:25,自引:0,他引:25  
BACKGROUND AND AIMS: Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0.16 pg < 1C < 1.95 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework for a selected subset of the Brassicacae, and use this as a template to examine genome size evolution in Brassicaceae. METHODS: DNA contents were determined by flow cytometry and chromosomes were counted for 34 species of the family Brassicaceae and for ten Arabidopsis thaliana ecotypes. The amplified and sequenced ITS region for 23 taxa (plus six other taxa with known ITS sequences) were aligned and used to infer evolutionary relationship by parsimony analysis. KEY RESULTS: DNA content in the species studied ranged over 8-fold (1C = 0.16-1.31 pg), and 4.4-fold (1C = 0.16-0.71 pg) excluding allotetraploid Brassica species. The 1C DNA contents of ten Arabidopsis thaliana ecotypes showed little variation, ranging from 0.16 pg to 0.17 pg. CONCLUSIONS: The tree roots at an ancestral genome size of approximately 1x = 0.2 pg. Arabidopsis thaliana (1C = 0.16 pg; approximately 157 Mbp) has the smallest genome size in Brassicaceae studied here and apparently represents an evolutionary decrease in genome size. Two other branches that represent probable evolutionary decreases in genome size terminate in Lepidium virginicum and Brassica rapa. Branches in the phylogenetic tree that represent probable evolutionary increases in genome size terminate in Arabidopsis halleri, A. lyrata, Arabis hirsuta, Capsella rubella, Caulanthus heterophyllus, Crucihimalaya, Lepidium sativum, Sisymbrium and Thlaspi arvense. Branches within one clade containing Brassica were identified that represent two ancient ploidy events (2x to 4x and 4x to 6x) that were predicted from published comparative mapping studies.  相似文献   

14.
Arabidopsis lyrata, a close relative of the model plant Arabidopsis thaliana, is 1 of a few plant species for which the genome is to be entirely sequenced, which promises to yield important insights into genome evolution. Only 2 sparse linkage maps have been published, and these were based solely on markers derived from the A. thaliana genome. Because the genome of A. lyrata is practically twice as large as that of A. thaliana, the extent of map coverage of the A. lyrata genome remains uncertain. In this study, a 2-way pseudo-testcross strategy was used to construct genetic linkage maps of A. lyrata subsp. petraea and A. lyrata subsp. lyrata, using simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) markers from the A. thaliana genome, and anonymous amplified fragment length polymorphism (AFLP) markers that could potentially uncover regions unique to the A. lyrata genome. The SSR and CAPS markers largely confirmed the relationships between linkage groups in A. lyrata and A. thaliana. AFLP markers slightly increased the coverage of the A. lyrata maps, but mostly increased marker density on the linkage groups. We noted a much lower level of polymorphism and a greater segregation distortion in A. lyrata subsp. lyrata markers. The implications of these findings for the sequencing of the A. lyrata genome are discussed.  相似文献   

15.
Investigating ancient duplication events in the Arabidopsis genome   总被引:10,自引:0,他引:10  
The complete genomic analysis of Arabidopsis thaliana has shown that a major fraction of the genome consists of paralogous genes that probably originated through one or more ancient large-scale gene or genome duplication events. However, the number and timing of these duplications still remains unclear, and several different hypotheses have been put forward recently. Here, we reanalyzed duplicated blocks found in the Arabidopsis genome described previously and determined their date of divergence based on silent substitution estimations between the paralogous genes and, where possible, by phylogenetic reconstruction. We show that methods based on averaging protein distances of heterogeneous classes of duplicated genes lead to unreliable conclusions and that a large fraction of blocks duplicated much more recently than assumed previously. We found clear evidence for one large-scale gene or even complete genome duplication event somewhere between 70 to 90 million years ago. Traces pointing to a much older (probably more than 200 million years) large-scale gene duplication event could be detected. However, for now it is impossible to conclude whether these old duplicates are the result of one or more large-scale gene duplication events. abbreviations dA, fraction of amino acid substitutions; Kn, number of nonsynonymous substitutions per nonsynonymous site; Ks, number of synonymous substitutions per synonymous site; MYA, million years ago  相似文献   

16.
LRR-containing receptors regulating plant development and defense   总被引:22,自引:0,他引:22  
Despite the presence of more than 400 genes that encode receptor-like kinases (RLKs) in the Arabidopsis thaliana genome, very little is known about the range of biological processes that they control, or the mechanisms by which they function. This review focuses on the most recent findings from studies of several leucine-rich-repeat (LRR) class RLKs in A. thaliana, and their implications for our understanding of plant receptor function and signaling. We compare the biological functions of plant and animal LRR-containing receptors, and the potential commonalities in the signaling mechanisms employed.  相似文献   

17.
Few plant peptides involved in intercellular communication have been experimentally isolated. Sequence analysis of the Arabidopsis thaliana genome has revealed numerous transmembrane receptors predicted to bind proteinacious ligands, emphasizing the importance of identifying peptides with signaling function. Annotation of the Arabidopsis genome sequence has made it possible to identify peptide-encoding genes. However, such annotational identification is impeded because small genes are poorly predicted by gene-prediction algorithms, thus prompting the alternative approaches described here. We initially performed a systematic analysis of short polypeptides encoded by annotated genes on two Arabidopsis chromosomes using SignalP to identify potentially secreted peptides. Subsequent homology searches with selected, putatively secreted peptides, led to the identification of a potential, large Arabidopsis family of 34 genes. The predicted peptides are characterized by a conserved C-terminal sequence motif and additional primary structure conservation in a core region. The majority of these genes had not previously been annotated. A subset of the predicted peptides show high overall sequence similarity to Rapid Alkalinization Factor (RALF), a peptide isolated from tobacco. We therefore refer to this peptide family as RALFL for RALF-Like. RT-PCR analysis confirmed that several of the Arabidopsis genes are expressed and that their expression patterns vary. The identification of a large gene family in the genome of the model organism Arabidopsis thaliana demonstrates that a combination of systematic analysis and homology searching can contribute to peptide discovery.  相似文献   

18.
19.
20.
Recent studies have elucidated the ancient polyploid history of the Arabidopsis thaliana (Brassicaceae) genome. The studies concur that there was at least one polyploidy event occurring some 14.5 to 86 million years ago (Mya), possibly near the divergence of the Brassicaceae from its sister family, Cleomaceae. Using a comparative genomics approach, we asked whether this polyploidy event was unique to members of the Brassicaceae, shared with the Cleomaceae, or an independent polyploidy event in each lineage. We isolated and sequenced three genomic regions from diploid Cleome spinosa (Cleomaceae) that are each homoeologous to a duplicated region shared between At3 and At5, centered on the paralogs of SEPALLATA (SEP) and CONSTANS (CO). Phylogenetic reconstructions and analysis of synonymous substitution rates support the hypothesis that a genomic triplication in Cleome occurred independently of and more recently than the duplication event in the Brassicaceae. There is a strong correlation in the copy number (single versus duplicate) of individual genes, suggesting functionally consistent influences operating on gene copy number in these two independently evolving lineages. However, the amount of gene loss in Cleome is greater than in Arabidopsis. The genome of C. spinosa is only 1.9 times the size of A. thaliana, enabling comparative genome analysis of separate but related polyploidy events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号