首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Historically, diversity in a community was often believed to result primarily from local processes, but recent evidence suggests that regional diversity may strongly influence local diversity as well. We used experimental and observational vegetation data from Konza Prairie, Kansas, USA, to determine if: (1) there is a relationship between local and regional richness in tallgrass prairie vegetation; (2) local dominance reduces local species richness; and (3) reducing local dominance increases local and regional species richness. We found a positive relationship between regional and local richness; however, this relationship varied with grazing, topography and fire frequency. The decline in variance explained in the grazed vegetation, in particular, suggested that local processes associated with grazing pressure on the dominant grasses strongly influenced local species richness. Experimental removal of one of the dominant grasses, Andropogon scoparius , from replicate plots resulted in a significant increase in local species richness compared to adjacent reference plots. Overall all sites, species richness was higher in grazed (192 spp.) compared to ungrazed (158 spp.) areas. Across the Konza Prairie landscape, however, there were no significant differences in the frequency distribution of species occurrences, or in the relationship between the number of sites occupied and average abundance in grazed compared to ungrazed areas. Thus, local processes strongly influenced local richness in this tallgrass prairie, but local processes did not produce different landscape-scale patterns in species distribution and abundance. Because richness was enhanced at all spatial scales by reducing the abundance of dominant species, we suggest that species richness in tallgrass prairie results from feedbacks between, and interactions among, processes operating at multiple scales in space and time.  相似文献   

2.
Question: Do above‐ and belowground insects differentially impact plant community structure and function in a diverse native grassland? Location: Rough fescue prairie in Alberta, Canada. Methods: Above‐ and belowground insects were suppressed with insecticides for 5 years using a randomised block design. During this experiment, a severe drought began in 2001 and ended in 2003. Aboveground plant growth was measured as cover and biomass from 2001 to 2005. Root demography was measured in 2002 using a minirhizotron. Mixed models and repeated measures ANOVA were used to determine treatment effects on a number of response variables. MRBP were used to test for treatment effects on community composition. Results: Five years of insect suppression had few significant effects on plant growth, species richness or community composition, and were limited primarily to the severe drought in 2002. During the drought, insect attack increased root mortality, reduced plant cover, and altered community composition. Following the drought, plant responses were unaffected by insecticide application for the remainder of the experiment. Conclusions: Five years of insect suppression had only minor effects on community structure and function in this diverse native grassland. There was no indication that these effects increased over time. The results are counter to studies conducted in productive old‐field communities that revealed large effects of insects on community structure. We suggest that the unique features of this system, such as high species evenness, abundance of generalist herbivores, and a lack of competition for light among plants, limited the potential for insects to greatly impact community‐level processes.  相似文献   

3.
Abstract. In this study we examine the factors associated with variations in species richness within a remnant tall‐grass prairie in order to gain insight into the relative importance of controlling variables. The study area was a small, isolated prairie surrounded by wetlands and located within the coastal prairie region, which occurs along the northwestern Gulf of Mexico coastal plain. Samples were taken along three transects that spanned the prairie. Parameters measured included micro‐elevation, soil characteristics, indications of recent disturbance, above‐ground biomass (including litter), light penetration through the plant canopy, and species richness. Species richness was found to correlate with micro‐elevation, certain soil parameters, and light penetration through the canopy, but not with above‐ground biomass. Structural equation analysis was used to assess the direct and indirect effects of micro‐elevation, soil properties, disturbance, and indicators of plant abundance on species richness. The results of this analysis showed that observed variations in species richness were primarily associated with variations in environmental effects (from soil and microtopography) and were largely unrelated to variations in measures of plant abundance (biomass and light penetration). These findings suggest that observed variations in species richness in this system primarily resulted from environmental effects on the species pool. These results fit with a growing body of information that suggests that environmental effects on species richness are of widespread importance.  相似文献   

4.
Nonnative plants alter the composition of native plant communities, with concomitant effects on arthropods. However, plant invasions may not be the only disturbance affecting native communities, and multiple disturbances can have compounding effects. We assessed the effects of invasion and drought on plant and arthropod communities by comparing grasslands dominated by nonnative Old World bluestem grasses (OWBs, Dichanthium annulatum) to grasslands dominated by native plants during a period of decreasing drought severity (2011–2013). Native plant communities had more species of plants and arthropods (/m2) than areas dominated by OWBs during extreme drought, but richness was comparable as drought severity decreased. Abundance of arthropods was greater in native plant communities than in OWB communities during extreme drought, but OWB communities had more arthropods during moderate and non-drought conditions. We observed a shift in the arthropod community from one dominated by detritivores to one dominated by herbivores following plant invasion; the magnitude of this shift increased as drought severity decreased. Both plant communities were dominated by nonnative arthropods. A nonnative leafhopper (Balclutha rubrostriata) and native mites (Mochlozetidae) dominated OWB communities as drought severity decreased, and OWBs may serve as refugia for both taxa. Nonnative woodlice (Armadillidium vulgare) dominated native plant communities during extreme and non-drought conditions and abundance of this species may be associated with an increase in plant litter and available nutrients. Given the importance of arthropods for ecosystem services, incorporating arthropod data into conservation studies may demonstrate how changes in arthropod diversity alter ecosystem function where nonnative plants are dominant.  相似文献   

5.
Ants (Hymenoptera: Formicidae) and earthworms (Oligochaeta) are considered ecosystem engineers because they form biogenic structures in the soil that influence resource supply. The objectives of this study were to quantify recovery dynamics of these invertebrate groups across a chronosequence of restored prairies and elucidate whether changes in the abundance and biomass of ants and earthworms were related to key plant and ecosystem properties. We sampled ants and earthworms from cultivated fields, grasslands restored from 1 to 21 years, and native prairie. Ant abundance and biomass peaked between 5 and 8 years of restoration and abundance was 198 times greater than cultivated fields. Earthworm abundance increased linearly across the chronosequence and became representative of native prairie, but all earthworm populations were dominated by European species. Ant abundance and biomass were positively correlated with plant diversity and plant richness, whereas earthworm abundance biomass was only related to surface litter. These results demonstrate that earthworm abundance increases with time since cessation of cultivation and concomitant with prairie establishment, whereas the abundance and biomass of ants are more related to the structure of restored plant communities than time. The dominance of exotic earthworms in these restorations, coupled with their capacity to alter soil properties and processes may represent novel conditions for grassland development.  相似文献   

6.
  1. Shifts in dominance and species reordering can occur in response to global change. However, it is not clear how altered precipitation and disturbance regimes interact to affect species composition and dominance.
  2. We explored community‐level diversity and compositional similarity responses, both across and within years, to a manipulated precipitation gradient and annual clipping in a mixed‐grass prairie in Oklahoma, USA. We imposed seven precipitation treatments (five water exclusion levels [?20%, ?40%, ?60%, ?80%, and ?100%], water addition [+50%], and control [0% change in precipitation]) year‐round from 2016 to 2018 using fixed interception shelters. These treatments were crossed with annual clipping to mimic hay harvest.
  3. We found that community‐level responses were influenced by precipitation across time. For instance, plant evenness was enhanced by extreme drought treatments, while plant richness was marginally promoted under increased precipitation.
  4. Clipping promoted species gain resulting in greater richness within each experimental year. Across years, clipping effects further reduced the precipitation effects on community‐level responses (richness and evenness) at both extreme drought and added precipitation treatments.
  5. Synthesis: Our results highlight the importance of studying interactive drivers of change both within versus across time. For instance, clipping attenuated community‐level responses to a gradient in precipitation, suggesting that management could buffer community‐level responses to drought. However, precipitation effects were mild and likely to accentuate over time to produce further community change.
  相似文献   

7.
Restored grasslands comprise an ever‐increasing proportion of grasslands in North America and elsewhere. However, floristic studies of restored grasslands indicate that our ability to restore plant communities is limited. Our goal was to assess the effectiveness of restoration seeding for recovery of key plant community components on former exotic, cool‐season pastures using a chronosequence of six restoration sites and three nearby remnant tallgrass prairie sites in West‐Central Iowa. We assessed trends in Simpson's diversity and evenness, richness and abundance of selected native and exotic plant guilds, and mean coefficient of conservatism (mean C). Simpson's diversity and evenness and perennial invasive species abundance all declined with restoration site age. As a group, restoration sites had greater richness of native C3 species with late phenology, but lower richness and abundance of species with early phenology relative to remnant sites. Total native richness, total native abundance (cover), mean C, and abundance of late phenology C3 plants were similar between restoration and remnant sites. Observed declines in diversity and evenness with restoration age reflect increases in C4 grass abundance rather than absolute decreases in the abundance of perennial C3 species. In contrast to other studies, restoration seeding appears to have led to successful establishment of tallgrass prairie species that were likely to be included in seeding mixtures. While several floristic measures indicate convergence of restoration and remnant sites, biodiversity may be further enhanced by including early phenology species in seeding mixes in proportion to their abundance on remnant prairies.  相似文献   

8.
Climate models predict, and empirical evidence confirms, that more extreme precipitation regimes are occurring in tandem with warmer atmospheric temperatures. These more extreme rainfall patterns are characterized by increased event size separated by longer within season drought periods and represent novel climatic conditions whose consequences for different ecosystem types are largely unknown. Here, we present results from an experiment in which more extreme rainfall patterns were imposed in three native grassland sites in the Central Plains Region of North America, USA. Along this 600 km precipitation–productivity gradient, there was strong sensitivity of temperate grasslands to more extreme growing season rainfall regimes, with responses of aboveground net primary productivity (ANPP) contingent on mean soil water levels for different grassland types. At the mesic end of the gradient (tallgrass prairie), longer dry intervals between events led to extended periods of below-average soil water content, increased plant water stress and reduced ANPP by 18%. The opposite response occurred at the dry end (semiarid steppe), where a shift to fewer, but larger, events increased periods of above-average soil water content, reduced seasonal plant water stress and resulted in a 30% increase in ANPP. At an intermediate mixed grass prairie site with high plant species richness, ANPP was most sensitive to more extreme rainfall regimes (70% increase). These results highlight the inherent complexity in predicting how terrestrial ecosystems will respond to forecast novel climate conditions as well as the difficulties in extending inferences from single site experiments across biomes. Even with no change in annual precipitation amount, ANPP responses in a relatively uniform physiographic region differed in both magnitude and direction in response to within season changes in rainfall event size/frequency.  相似文献   

9.
Cover and richness of a 5‐year revegetation effort were studied with ,respect to small‐scale disturbance and nutrient manipulations. The site, originally a relict tallgrass prairie mined for gravel, was replanted to native grasses using a seed mixture of tall‐, mixed‐, and short‐grass species. Following one wet and three relatively dry years, a community emerged, dominated by species common in saline soils not found along the Colorado Front Range. A single species, Alkali sacaton (Sporobolus airoides), composed nearly 50% of relative vegetation cover in control plots exhibiting a negative relationship between cover and richness. Seeded species composed approximately 92% of vegetation cover. The remaining 8% was composed of weeds from nearby areas, seed bank survivors, or mix contaminants. Three years of soil nutrient amendments, which lowered plant‐available nitrogen and phosphorus, significantly increased relative cover of seeded species to 97.5%. Fertilizer additions of phosphate enhanced abundance of introduced annual grasses (Bromus spp.) but did not significantly alter cover in control plots. Unmanipulated 4‐m2 plots contained an average of 4.7 planted species and 3.9 nonplanted species during the 5‐year period, whereas plots that received grass herbicide averaged 5.4 nonplanted species. Species richness ranged from an average 6.9 species in low‐nutrient, undisturbed plots to 10.9 species in the relatively high‐nutrient, disturbed plots. The use of stockpiled soils, applied sparingly, in conjunction with a native seed mix containing species uncommon to the preexisting community generated a species‐depauperate, novel plant community that appears resistant to invasion by ruderal species.  相似文献   

10.
One of the most important conservation issues in ecology is the imperiled state of grassland ecosystems worldwide due to land conversion, desertification, and the loss of native populations and species. The Janos region of northwestern Mexico maintains one of the largest remaining black-tailed prairie dog (Cynomys ludovicianus) colony complexes in North America and supports a high diversity of threatened and endangered species. Yet, cattle grazing, agriculture, and drought have greatly impacted the region. We evaluated the impact of human activities on the Janos grasslands, comparing changes in the vertebrate community over the last two decades. Our results reveal profound, rapid changes in the Janos grassland community, demonstrating large declines in vertebrate abundance across all taxonomic groups. We also found that the 55,000 ha prairie dog colony complex has declined by 73% since 1988. The prairie dog complex has become increasingly fragmented, and their densities have shown a precipitous decline over the years, from an average density of 25 per ha in 1988 to 2 per ha in 2004. We demonstrated that prairie dogs strongly suppressed woody plant encroachment as well as created open grassland habitat by clearing woody vegetation, and found rapid invasion of shrubland once the prairie dogs disappeared from the grasslands. Comparison of grasslands and shrublands showed markedly different species compositions, with species richness being greatest when both habitats were considered together. Our data demonstrate the rapid decline of a grassland ecosystem, and documents the dramatic loss in biodiversity over a very short time period concomitant with anthropogenic grassland degradation and the decline of a keystone species.  相似文献   

11.
Plant–pollinator interactions are essential for the functioning of terrestrial ecosystems, but are increasingly affected by global change. The risks to such mutualistic interactions from increasing temperature and more frequent extreme climatic events such as drought or advanced snow melt are assumed to depend on network specialization, species richness, local climate and associated parameters such as the amplitude of extreme events. Even though elevational gradients provide valuable model systems for climate change and are accompanied by changes in species richness, responses of plant–pollinator networks to climatic extreme events under different environmental and biotic conditions are currently unknown. Here, we show that elevational climatic gradients, species richness and experimentally simulated extreme events interactively change the structure of mutualistic networks in alpine grasslands. We found that the degree of specialization in plant–pollinator networks (H2′) decreased with elevation. Nonetheless, network specialization increased after advanced snow melt at high elevations, whereas changes in network specialization after drought were most pronounced at sites with low species richness. Thus, changes in network specialization after extreme climatic events depended on climatic context and were buffered by high species richness. In our experiment, only generalized plant–pollinator networks changed in their degree of specialization after climatic extreme events. This indicates that contrary to our assumptions, network generalization may not always foster stability of mutualistic interaction networks.  相似文献   

12.
The conservation and management of black-tailed prairie dogs (Cynomys ludovicianus) have been contentious issues in grasslands of central North America for much of the past century, primarily because of the perception that they compete with livestock for forage. Studies quantifying the magnitude of competition between prairie dogs and cattle are difficult to conduct because of the large spatial and long temporal scales needed to quantify how competition varies in response to interannual variation in precipitation and prairie dog abundance. We examined variation in mass gains of yearling steers in shortgrass steppe of northeastern Colorado, USA, with and without prairie dogs from 2008–2019, a period that encompassed a full cycle in prairie dog abundance from a nadir following plague-induced population collapse, to peak abundance following population recovery, to plague-induced population lows again. Analyses of cattle grazing distribution with global positioning system (GPS)-collars revealed preferential grazing on colonies following a period of unusually high vegetation production, and preferential grazing off colonies following a period of rapid vegetation senescence, but these patterns were not clearly related to cattle mass gains. Across all 12 years of the study, average daily mass gain (ADG) during the growing season was 0.97 kg/steer/day in pastures where prairie dogs were controlled annually, and 0.95 kg/steer/day in pastures where they were not. Average daily mass gain was a quadradic function of precipitation and a linear function of prairie dog occupancy within a pasture, with a generalized linear mixed model predicting an 8.0% decrease in ADG as prairie dog occupancy increased from 0 to 60% of a pasture with average growing-season precipitation. We did not detect a significant interaction between precipitation and prairie dog occupancy, but one limitation of our study is that the only drought year (2012) occurred when prairie dogs occupied low percentages (10–25%) of the study pastures. Prairie dogs had a small but detectable negative effect on cattle mass gains during the growing season in shortgrass steppe. The magnitude of this effect can be used by managers in combination with market conditions and the spatial extent of prairie dog colonies to estimate economic effects of prairie dogs on livestock operations. © 2021 The Wildlife Society. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

13.
Understanding how communities respond to extreme climatic events is important for predicting the impact of climate change on biodiversity. The plant vigor and stress hypotheses provide a theoretical framework for understanding how arthropods respond to stress, but are rarely tested at the community level. Following a record drought, we compared the communities of arthropods on pinyon pine (Pinus edulis) that exhibited a gradient in physical traits related to environmental stress (e.g., growth rate, branch dieback, and needle retention). Six patterns emerged that show how one of the predicted outcomes of climate change in the southwestern USA (i.e., increased drought severity) alters the communities of a foundation tree species. In accordance with the plant vigor hypothesis, increasing tree stress was correlated with an eight to tenfold decline in arthropod species richness and abundance. Trees that were more similar in their level of stress had more similar arthropod communities. Both foliage quantity and quality contributed to arthropod community structure. Individual species and feeding groups differed in their responses to plant stress, but most were negatively affected. Arthropod richness (r 2 = 0.48) and abundance (r 2 = 0.48) on individual trees were positively correlated with the tree’s radial growth during drought. This relationship suggests that tree ring analysis may be used as a predictor of arthropod diversity, which is similar to findings with ectomycorrhizal fungi. A contrast of our findings on arthropod abundance with published data on colonization by mutualistic fungi on the same trees demonstrates that at low stress these two communities respond differently, but at high stress both are negatively affected. These results suggest that the effect of extreme climatic events such as drought on foundation tree species are likely to decrease multi-trophic diversity and shift arthropod community composition, which in turn could cascade to affect other associated taxa.  相似文献   

14.
Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioural traits, what time periods and indicators of drought are most relevant, or how response varies geographically at broad spatial scales. Our goals were thus to determine (1) how avian abundance and species richness are related to drought, (2) whether community variations are more related to vegetation vigour or precipitation deviations and at what time periods relationships were strongest, (3) how response varies among avian guilds, and (4) how response varies among ecoregions with different precipitation regimes. Using mixed effect models and 1989–2005 North American Breeding Bird Survey data over the central United States, we examined the response to 10 precipitation‐ and greenness‐based metrics by abundance and species richness of the avian community overall, and of four behavioural guilds. Drought was associated with the most negative impacts on avifauna in the semiarid Great Plains, while positive responses were observed in montane areas. Our models predict that in the plains, Neotropical migrants respond the most negatively to extreme drought, decreasing by 13.2% and 6.0% in abundance and richness, while permanent resident abundance and richness increase by 11.5% and 3.6%, respectively in montane areas. In most cases, response of abundance was greater than richness and models based on precipitation metrics spanning 32‐week time periods were more supported than those covering shorter time periods and those based on greenness. While drought is but one of myriad environmental variations birds encounter, our results indicate that drought is capable of imposing sizable shifts in abundance, richness, and composition on avian communities, an important implication of a more climatically variable future.  相似文献   

15.
Question: Do severe winter flood events lift the nutrient limitation of biomass production in a river floodplain? How does this affect plant species richness? How long do the effects last? Location: Floodplain grassland on calcareous sandy loam near river Rhine in The Netherlands. Methods: Plots were fertilised with four treatments (control, N, P, N+P) for 21 years; plant species composition, vegetation biomass and tissue nutrient concentrations were determined every year between 1985 and 2005. Results: Fertilisation with N generally increased biomass production and reduced species richness, but these effects varied over time. During the first four years of the experiment, biomass production appeared to be co‐limited by N and P, while N fertilisation dramatically reduced plant species richness; these effects became weaker subsequently. Following two extreme winter floods in 1993–94 and 1994–95 and a drought in spring 1996, the effects of fertilisation disappeared between 1998 and 2001 and then appeared again. Flooding caused an overall reduction in species richness (from c. 24 to 15 species m‐2) and an increase in biomass production, which were only partly reversed after ten years. Conclusions: Long time series are necessary to understand vegetation dynamics and nutrient limitation in river floodplains, since they are influenced by occasional flood and drought events, whose effects may persist for more than ten years. A future increase in flooding frequency might be detrimental to species richness in floodplain grasslands.  相似文献   

16.
Geographical gradients of persistence in community structure have been suggested to be causally related to underlying gradients of species diversity, environmental variability and/or productivity. In order to test whether the persistence of breeding duck communities was dependent on any one of these three factors, thirty-three years of census data from the Canadian prairie and boreal forest regions was examined along geographical gradients of wetland habitat variability and productivity. For breeding ducks, locally derived patterns of persistence were generally independent of local habitat conditions. Persistence appeared to be related more to patterns of emigration and immigration in response to climatic conditions (i.e., drought) in the southern prairies than to local species richness, wetland habitat variability or productivity. It is suggested, therefore, that analyses of community persistence derived at small spatial scales may be of limited value if the structure of communities is not regulated by local conditions.  相似文献   

17.
Global warming and recurring drought are expected to accelerate water limitation for plant communities in semiarid Mediterranean ecosystems and produce directional shifts in structure and composition that are not easily detected, and supporting evidence is scarce. We conducted a long‐term (17 years) nocturnal‐warming (+0.6°C) and drought (?40% rainfall) experiments in an early‐successional Mediterranean shrubland to study the changes in community structure and composition, contrasting functional groups and dominant species, and the superimposed effects of natural extreme drought. Species richness decreased in both the warming and drought treatments. Responses to the moderate warming were associated with decreases in herb abundance, and responses to the drought were associated with decreases in both herb and shrub abundances. The drought also significantly decreased community diversity and evenness. Changes in abundance differed between herbs (decreases) and shrubs (increases or no changes). Both warming and drought, especially drought, increased the relative species richness and abundance of shrubs, favoring the establishment of shrubs. Both warming and drought produced significant shifts in plant community composition. Experimental warming shifted the community composition from Erica multiflora toward Rosmarinus officinalis, and drought consistently shifted the composition toward Globularia alypum. The responses in biodiversity (e.g., community biodiversity, changes of functional groups and compositional shifts) were also strongly correlated with atmospheric drought (SPEI) in winter–spring and/or summer, indicating sensitivity to water limitation in this early‐successional Mediterranean ecosystem, especially to natural extreme droughts. Our results suggest that the shifts in species assembles and community diversity and composition are accelerated by the long‐term nocturnal‐warming and drought, combined with natural severe droughts, and that the magnitude of the impacts of climate change is also correlated with the successional status of ecosystem. The results thus highlight the necessity for assessing the impacts on ecosystemic functioning and services and developing effective measures for conserving biodiversity.  相似文献   

18.
Dominant Grasses Suppress Local Diversity in Restored Tallgrass Prairie   总被引:1,自引:0,他引:1  
Warm‐season (C4) grasses commonly dominate tallgrass prairie restorations, often at the expense of subordinate grasses and forbs that contribute most to diversity in this ecosystem. To assess whether the cover and abundance of dominant grass species constrain plant diversity, we removed 0, 50, or 100% of tillers of two dominant species (Andropogon gerardii or Panicum virgatum) in a 7‐year‐old prairie restoration. Removing 100% of the most abundant species, A. gerardii, significantly increased light availability, forb productivity, forb cover, species richness, species evenness, and species diversity. Removal of a less abundant but very common species, P. virgatum, did not significantly affect resource availability or the local plant community. We observed no effect of removal treatments on critical belowground resources, including inorganic soil N or soil moisture. Species richness was inversely correlated with total grass productivity and percent grass cover and positively correlated with light availability at the soil surface. These relationships suggest that differential species richness among removal treatments resulted from treatment induced differences in aboveground resources rather than the belowground resources. Selective removal of the dominant species A. gerardii provided an opportunity for seeded forb species to become established leading to an increase in species richness and diversity. Therefore, management practices that target reductions in cover or biomass of the dominant species may enhance diversity in established and grass‐dominated mesic grassland restorations.  相似文献   

19.
It is unknown to what extent or by what mechanisms introducing biodiversity influences stability of high-stress ecosystems undergoing restoration. Opportunity to investigate patterns of biodiversity and resistance to disturbance in a high-stress environment was presented when severe drought struck a restoration experiment underway on abandoned limestone quarry floors in Ontario, Canada. Experimental communities were previously established within small quarry-floor plots by sowing native grass and forb species considered to be characteristic of rare natural limestone pavements called alvars. Despite adding an identical 18-species seed-mixture to all plots, realized communities varied extensively with respect to the numbers of species established (species richness), the total number of individuals established (community abundance), and the number of individuals belonging to each species (population abundances). We investigated the relationship between species richness and resistance of community abundance to drought, while accounting for background richness–abundance correlation, by contrasting slopes and intercepts of the richness–abundance relationship immediately before vs. 6 weeks after the drought. This relationship was significantly positive prior to drought but 72% steeper in slope following drought, while the abundance intercept exhibited a 44% drop. Plots featuring richer, more abundant communities prior to drought thus suffered considerably less damage than species-poor, low-abundance plots. Population abundance was weakly related to richness prior to drought, but strongly and positively related to richness after the drought. At the individual species level, no species experienced greater losses of abundance with increased plot richness, but six species experienced reduced abundance losses where they co-occurred with more neighbour species. Facilitation or other mechanisms capable of increasing population resistance may thus underlie community resistance in high-stress environments. Though controlled experiments are required to establish causes of relationships reported here, the forms of these relationships suggest that managers may be able to promote resistance in high-stress ecosystems by establishing species-rich communities.  相似文献   

20.
In tallgrass prairie, plant species interactions regulated by their associated mycorrhizal fungi may be important forces that influence species coexistence and community structure; however, the mechanisms and magnitude of these interactions remain unknown. The objective of this study was to determine how interspecific competition, mycorrhizal symbiosis, and their interactions influence plant community structure. We conducted a factorial experiment, which incorporated manipulations of abundance of dominant competitors, Andropogon gerardii and Sorghastrum nutans, and suppression of mycorrhizal symbiosis using the fungicide benomyl under two fire regimes (annual and 4-year burn intervals). Removal of the two dominant C4 grass species altered the community structure, increased plant species richness, diversity, and evenness, and increased abundance of subdominant graminoid and forb species. Suppression of mycorrhizal fungi resulted in smaller shifts in community structure, although plant species richness and diversity increased. Responses of individual plant species were associated with their degree of mycorrhizal responsiveness: highly mycorrhizal responsive species decreased in abundance and less mycorrhizal responsive species increased in abundance. The combination of dominant-grass removal and mycorrhizal suppression treatments interacted to increase synergistically the abundance of several species, indicating that both processes influence species interactions and community organization in tallgrass prairie. These results provide evidence that mycorrhizal fungi affect plant communities indirectly by influencing the pattern and strength of plant competitive interactions. Burning strongly influenced the outcome of these interactions, which suggests that plant species diversity in tallgrass prairie is influenced by a complex array of interacting processes, including both competition and mycorrhizal symbiosis. Received: 7 April 1999 / Accepted: 30 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号