首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A recombinant plasmid, pSM2513, containing an 8.5 kb DNA insert was isolated from a genomic library of Serratia marcescens by using interspecific complementation. This plasmid conferred resistance to methyl methanesulphonate and UV irradiation upon recA mutants of Escherichia coli and enhanced recombination proficiency, as measured by Hfr-mediated conjugation, in recA mutants of E. coli. Furthermore, when recA mutants of E. coli harbouring pSM2513 were subjected to UV irradiation, filamentation of the cells was observed. This did not occur upon UV irradiation of the same mutants harbouring the cloning vector alone. These results imply that the S. marcescens recA gene on pSM2513 is functionally similar to the E. coli recA gene in several respects. Restriction enzyme analysis and subcloning studies revealed that the S. marcescens recA gene was located on a 2.7 kb Bg/II-KpnI fragment of pSM2513, and its gene product of approximately 39 kDa resembled the E. coli RecA protein in molecular mass. Using transformation-mediated marker rescue, a recA mutant of S. marcescens was successfully constructed; its proficiency both in homologous recombination and in DNA repair was abolished compared with its parent.  相似文献   

3.
4.
5.
Two forms of beta-N-acetylhexosaminidase from Serratia marcescens with an optimum pH of 5.0 and 6.5, respectively, to 4-methylumbelliferyl-2-acetamido-2-deoxy-beta-D-glucopyranoside were separated by DEAE-cellulose chromatography and Sephacryl S-200 chromatography. On the basis of their molecular weights, thermal stability, substrate specificity and isoelectric points, the form with an acidic pH optimum resembled hexosaminidase B, whereas the form with a neutral pH optimum resembled hexosaminidase C. Lectin binding studies showed that the acidic form does not bind to concanavalin-A-Sepharose, Tetragonolobus purpurea-agarose, wheat germ-agglutinin-Sepharose or Ricinus communis-agglutinin-agarose, whereas the neutral form binds to the last two lectin columns.  相似文献   

6.
Akatsuka H  Kawai E  Sakurai N  Omori K 《Gene》2003,302(1-2):185-192
The 3.9 kb chromosomal DNA was cloned from Serratia marcescens Sr41, which confers on Escherichia coli cells a phenotype of clear halo formation on tributyrin agar plates. Three complete open reading frames (ORFs) were identified in the inserted DNA, and one ORF was demonstrated to encode a 28 kDa protein of 255 amino acids related to esterase activity. Interestingly, the ORF was 70% identical to a product of the E. coli bioH gene, which lies at a locus separated from the bioABFCD operon and acts in the early steps of the biotin synthetic pathway before pimeloyl-CoA synthesis. This gene complemented a bioH-deficient mutation of E. coli. From the sequence analysis, BioH is presumed to be a serine hydrolase, which belongs to the alpha/beta hydrolase-fold family comprising a wide variety of hydrolases including esterases. A catalytic triad composed of a nucleophilic residue (Ser80), an acidic residue (Asp206), and histidine (His234) was conserved in BioH, and the nucleophilic residue Ser, a catalytic center, was situated in the consensus sequence of G-X-S-X-G-G, a nucleophile elbow. Although the enzymatic function of BioH is not yet elucidated, the bioH gene products from S. marcescens and E. coli show esterase activity, which may imply the hydrolysis of a precursor leading to pimeloyl-CoA ester. The esterase activity of BioH and its CoA binding activity recently reported agree with a current hypothesis of pimeloyl-CoA ester synthesis from CoA and acylester derivatives including an acyl-carrier protein.  相似文献   

7.
8.
Quorum-sensing systems that have been widely identified in bacteria play important roles in the regulation of bacterial multicellular behavior by which bacteria sense population density to control various biological functions, including virulence. One characteristic of the luxIR quorum-sensing genes is their diverse and discontinuous distribution among proteobacteria. Here we report that the spnIR quorum-sensing system identified in the enterobacterium Serratia marcescens strain SS-1 is carried in a transposon, TnTIR, which has common characteristics of Tn3 family transposons and is mobile between chromosomes and plasmids of different enterobacterial hosts. SpnIR functions in the new host and was shown to negatively regulate the TnTIR transposition frequency. This finding may help reveal the horizontal transfer and evolutionary mechanism of quorum-sensing genes and alter the way that we perceive regulation of bacterial multicellular behavior.  相似文献   

9.
Serratia marcescens bacteriophages   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

10.
11.
Chitinase-overproducing mutant of Serratia marcescens.   总被引:13,自引:2,他引:11       下载免费PDF全文
Genetic modification of Serratia marcescens QMB1466 was undertaken to isolated mutants which produce increased levels of chitinolytic activity. After mutagenesis with ultraviolet light, ethyl methane sulfonate or N-methyl-N'-nitro-N-nitrosoguanidine, 19,940 colonies were screened for production of enlarged zones of clearing (indicative of chitinase activity) on chitin-containing agar plates. Forty-four chitinase high producers were tested further in shake flask cultures. Mutant IMR-1E1 was isolated which, depending on medium composition, produced two to three times more than the wild type of the other components of the chitinolytic enzyme system--a factor involved in the hydrolysis of crystalline chitin and chitobiase. After induction by chitin, endochitinase and chitobiase activity appeared at similar times for both IMR-1E1 and QMB1466, suggesting possible coordinate control of these enzymes. The results are consistent with IMR-1E1 containing a regulatory mutation which increased production of the components of the chitinolytic enzyme system and/or with IMR-1E1 containing a tandem duplication of the chitinase genes. The high rate of reversion of IMR-1E1 to decreased levels of chitinase production suggests that the overproduction of chitinase by IMR-1E1 is due to a tandem gene duplication.  相似文献   

12.
The wild strain of Serratia marcescens rapidly degraded threonine and formed aminoacetone in a medium containing glucose and urea. Extracts of this strain showed high threonine dehydrogenase and "biosynthetic" threonine deaminase activities, but no threonine aldolase activity. Threonine dehydrogenase-deficient strain Mu-910 was selected among mutants unable to grow on threonine as the carbon source. This strain did not form aminoacetone from threonine, but it slowly degraded threonine. Strain D-60, deficient in both threonine dehydrogenase and threonine deaminase, was derived from strain Mu-910 and barely degraded threonine. A glycine-requiring strain derived from the wild strain grew in minimal medium containing threonine as the glycine source, whereas a glycine-requiring strain derived from strain Mu-910 did not grow. This indicates that threonine dehydrogenase participates in glycine formation from threonine (via alpha-amino-beta-ketobutyrate) as well as in threonine degradation to aminoacetone.  相似文献   

13.
14.
Summary Utilizing the DNA sequence of the metalloprotease fromSerratia strain E-15, we isolated and sequenced the homologous gene fromSerratia strain SM6. These two genes are similar at both the DNA and protein sequence level. Expression of the protease gene inEscherichia coli was achieved by use of thelac promoter. This resulted in the production and excretion of an immunologically detectable but inactive protein of slightly higher molecular weight than that fromSerratia. We introduced the cloned gene into previously described protease mutants. The observed pattern of protease expression suggested that these mutations fall into three classes.  相似文献   

15.
The sodium, potassium, and magnesium ion contents of Serratia marcescens and those of its salt-tolerant relative, S. marinoruba, were determined by atomic-absorption spectrometry. The intracellular K(+) and Mg(2+) contents of both microorganisms were found to be dependent on the ionic strength of the growth or suspending medium. The Mg(2+) content of S. marinoruba was generally greater than that of S. marcescens. The Na(+) content of the cells was normally low and did not increase as the cells aged or when the cells were grown in media of high ionic strength. The transport of K(+) by resting cells suspended in hypertonic solution was studied by chemical and light-scattering techniques and was found to be more rapid in S. marcescens than in S. marinorubra. The slower rate of K(+) transport in S. marinorubra is probably related to the lower glycogen reserves found in resting cells of this microorganism. K(+) transport was found to have a pH optimum of 5.5 to 6.1 for S. marcescens, and the K(m) for K(+) was approximately 1.6 mm. Na(+) and Mg(2+) were not taken up by the cells, although the presence of Mg(2+) tended to decrease rates of K(+) uptake. Tris-(hydroxymethyl)aminomethane, routinely used for resuspending the cells, was apparently taken up by the cells at pH >7.  相似文献   

16.
17.
18.
19.
Iron transport systems of Serratia marcescens.   总被引:2,自引:0,他引:2       下载免费PDF全文
A Angerer  B Klupp    V Braun 《Journal of bacteriology》1992,174(4):1378-1387
Serratia marcescens W225 expresses an unconventional iron(III) transport system. Uptake of Fe3+ occurs in the absence of an iron(III)-solubilizing siderophore, of an outer membrane receptor protein, and of the TonB and ExbBD proteins involved in outer membrane transport. The three SfuABC proteins found to catalyze iron(III) transport exhibit the typical features of periplasmic binding-protein-dependent systems for transport across the cytoplasmic membrane. In support of these conclusions, the periplasmic SfuA protein bound iron chloride and iron citrate but not ferrichrome, as shown by protection experiments against degradation by added V8 protease. The cloned sfuABC genes conferred upon an Escherichia coli aroB mutant unable to synthesize its own enterochelin siderophore the ability to grow under iron-limiting conditions (in the presence of 0.2 mM 2.2'-dipyridyl). Under extreme iron deficiency (0.4 mM 2.2'-dipyridyl), however, the entry rate of iron across the outer membrane was no longer sufficient for growth. Citrate had to be added in order for iron(III) to be translocated as an iron citrate complex in a FecA- and TonB-dependent manner through the outer membrane and via SfuABC across the cytoplasmic membrane. FecA- and TonB-dependent iron transport across the outer membrane could be clearly correlated with a very low concentration of iron in the medium. Expression of the sfuABC genes in E. coli was controlled by the Fur iron repressor gene. S. marcescens W225 was able to synthesize enterochelin and take up iron(III) enterochelin. It contained an iron(III) aerobactin transport system but lacked aerobactin synthesis. This strain was able to utilize the hydroxamate siderophores ferrichrome, coprogen, ferrioxamine B, rhodotorulic acid, and schizokinen as sole iron sources and grew on iron citrate as well. In contrast to E. coli K-12, S. marcescens could utilize heme. DNA fragments of the E. coli fhuA, iut, exbB, and fur genes hybridized with chromosomal S. marcescens DNA fragments, whereas no hybridization was obtained between S. marcescens chromosomal DNA and E. coli fecA, fhuE, and tonB gene fragments. The presence of multiple iron transport systems was also indicated by the increased synthesis of at least five outer membrane proteins (in the molecular weight range of 72,000 to 87,000) after growth in low-iron media. Serratia liquefaciens and Serratia ficaria produced aerobactin, showing that this siderophore also occurs in the genus Serratia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号