首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gab-1 is a multiple docking protein that is tyrosine phosphorylated by receptor tyrosine kinases such as c-Met, hepatocyte growth factor/scatter factor receptor, and epidermal growth factor receptor. We have now demonstrated that cell-cell adhesion also induces marked tyrosine phosphorylation of Gab-1 and that disruption of cell-cell adhesion results in its dephosphorylation. An anti-E-cadherin antibody decreased cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas the expression of E-cadherin specifically induced tyrosine phosphorylation of Gab-1. A relatively selective inhibitor of Src family kinases reduced cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas expression of a dominant-negative mutant of Csk increased it. Disruption of cell-cell adhesion, which reduced tyrosine phosphorylation of Gab-1, also reduced the activation of mitogen-activated protein kinase and Akt in response to cell-cell adhesion. These results indicate that E-cadherin-mediated cell-cell adhesion induces tyrosine phosphorylation by a Src family kinase of Gab-1, thereby regulating the activation of Ras/MAP kinase and phosphatidylinositol 3-kinase/Akt cascades.  相似文献   

2.
The Src family protein tyrosine kinases (SFKs) are crucial regulators of cellular morphology. In Drosophila, Src64 controls complex morphological events that occur during oogenesis. Recent studies have identified key Src64-dependent mechanisms that regulate actin cytoskeletal dynamics during the growth of actin-rich ring canals, which act as intercellular bridges between germ cells. By contrast, the molecular mechanisms that regulate Src64 activity levels and potential roles for Src64 in additional morphological events in the ovary have not been defined. In this report, we demonstrate that regulation of Src64 by Drosophila C-terminal-Src Kinase (Csk) contributes to the packaging of germline cysts by overlying somatic follicle cells during egg chamber formation. These results uncover novel roles for both Csk and Src64 in a dynamic event that involves adhesion, communication between cell types and control of cell motility. Strikingly, Src64 and Csk function in the germline to control packaging, not in migrating follicle cells, suggesting novel functions for this signaling cassette in regulating dynamic adhesion. In contrast to the role played by Csk in the regulation of Src64 activity during packaging, Csk is dispensable for ring canal growth control, indicating that distinct mechanisms control Src64 activity during different morphological events.  相似文献   

3.
Src family kinases (SFKs) have been implicated in the regulation of cell motility. To verify their in vivo roles during development, we generated mutant mice in which Csk, a negative regulator of SFKs, was inactivated in neural crest lineages using the Protein zero promoter in a Cre-loxP system. Inactivation of Csk caused deformities in various tissues of neural crest origins, including facial dysplasia and corneal opacity. In the cornea, the stromal collagen fibril was disorganized and there was an overproduction of collagen 1a1 and several metalloproteases. The corneal endothelium failed to overlie the central region of the eye and the peripheral endothelium displayed a disorganized cytoskeleton. Corneal mesenchymal cells cultured from mutant mice showed attenuated cell motility. In these cells, p130 Crk-associated substrate (Cas) was hyperphosphorylated and markedly downregulated. The expression of a dominant negative Cas (CasΔSD) could suppress the cell motility defects. Fluorescence resonance energy transfer analysis revealed that activation of Rac1 and Cdc42 was depolarized in Csk-inactivated cells, which was restored by the expression of either Csk or CasΔSD. These results demonstrate that the SFKs/Csk circuit plays crucial roles in corneal development by controlling stromal organization and by ensuring cell motility via the Cas-Rac/Cdc42 pathways.  相似文献   

4.
The C-terminal Src kinase p50csk phosphorylates Src family tyrosine kinases and down-regulates their activity in vitro. To gain insight into the cellular functions of this potentially antioncogenic enzyme, we have overexpressed the csk cDNA by using an inducible promoter in HeLa cells. Despite some differences in basal Src activity in the clones analyzed, Src activity was not significantly suppressed, while the amount of p50csk and Csk activity increased at least 10-fold during 3 days of induction. Immunofluorescence for the induced p50csk was localized in the cytoplasm and distinctly in focal adhesions, in which the amount of phosphotyrosine containing proteins was also increased. Point and deletion mutagenesis experiments showed that localization in focal adhesions was dependent on the SH2 and SH3 domains of Csk but not on its catalytic activity. Csk formed a complex with the focal adhesion protein paxillin in cells, and its SH2 domain was shown to interact with pp125FAK and paxillin in vitro. After Csk induction, the cells became spherical and more loosely attached to the culture substratum, and the alpha v beta 5 integrin complex (vitronectin receptor) of focal adhesions was redistributed to a novel type of structure consisting of punctate plaques on the ventral cell surface. These phenotypic changes occurred in several clones analyzed and were totally reversible when Csk was switched off, but they did not occur in cells overexpressing the catalytically inactive Csk R-222 mutant or luciferase. Our results thus show that a fraction of cellular Csk is targeted to focal adhesions via its SH2 and SH3 domains, probably interacting with tyrosyl-phosphorylated focal adhesion proteins. They also suggest that Csk is involved in the regulation of integrins controlling cell attachment and shape.  相似文献   

5.
Filaggrin is an intermediate filament (IF)-associated protein that aggregates keratin IFs in vitro and is thought to perform a similar function during the terminal differentiation of epidermal keratinocytes. To further explore the role of filaggrin in the cytoskeletal rearrangement that accompanies epidermal differentiation, we generated keratinocyte cell lines that express human filaggrin using a tetracycline-inducible promoter system. Filaggrin expression resulted in reduced keratinocyte proliferation and caused an alteration in cell cycle distribution consistent with a post-G1 phase arrest. Keratin filament distribution was disrupted in filaggrin-expressing lines, while the organization of actin microfilaments and microtubules was more mildly affected. Evidence for direct interaction of filaggrin and keratin IFs was seen by overlay assays of GFP-filaggrin with keratin proteins in vitro and by filamentous filaggrin distribution in cells with low levels of expression. Cells expressing moderate to high levels of filaggrin showed a rounded cell morphology, loss of cell-cell adhesion, and compacted cytoplasm. There was also partial or complete loss of the desmosomal proteins desmoplakin, plakoglobin, and desmogleins from cell-cell borders, while the distribution of the adherens junction protein E-cadherin was not affected. No alterations in keratin cytoskeleton, desmosomal protein distribution, or cell shape were observed in control cell lines expressing beta-galactosidase. Filaggrin altered the cell shape and disrupted the actin filament distribution in IF-deficient SW13 cells, demonstrating that filaggrin can affect cell morphology independent of the presence of a cytoplasmic IF network. These studies demonstrate that filaggrin, in addition to its known effects on IF organization, can affect the distribution of other cytoskeletal elements including actin microfilaments, which can occur in the absence of a cytoplasmic IF network. Further, filaggrin can disrupt the distribution of desmosome proteins, suggesting an additional role(s) for this protein in the cytoskeletal and desmosomal reorganization that occurs at the granular to cornified cell transition during terminal differentiation of epidermal keratinocytes.  相似文献   

6.
Integrins regulate cell adhesion and motility through tyrosine kinases, but initiation of this process is poorly understood. We find here that Src associates constitutively with integrin alphaIIbbeta3 in platelets. Platelet adhesion to fibrinogen caused a rapid increase in alphaIIbbeta3-associated Src activity, and active Src localized to filopodia and cell edges. Csk, which negatively regulates Src by phosphorylating Tyr-529, was also constitutively associated with alphaIIbbeta3. However, fibrinogen binding caused Csk to dissociate from alphaIIbbeta3, concomitant with dephosphorylation of Src Tyr-529 and phosphorylation of Src activation loop Tyr-418. In contrast to the behavior of Src and Csk, Syk was associated with alphaIIbbeta3 only after fibrinogen binding. Platelets multiply deficient in Src, Hck, Fgr, and Lyn, or normal platelets treated with Src kinase inhibitors failed to spread on fibrinogen. Inhibition of Src kinases blocked Syk activation and inhibited phosphorylation of Syk substrates (Vav1, Vav3, SLP-76) implicated in cytoskeletal regulation. Syk-deficient platelets exhibited Src activation upon adhesion to fibrinogen, but no spreading or phosphorylation of Vav1, Vav3, and SLP-76. These studies establish that platelet spreading on fibrinogen requires sequential activation of Src and Syk in proximity to alphaIIbbeta3, thus providing a paradigm for initiation of integrin signaling to the actin cytoskeleton.  相似文献   

7.
To elucidate the regulatory mechanism of cell transformation induced by c-Src tyrosine kinase, we performed a proteomic analysis of tyrosine phosphorylated proteins that interact with c-Src and/or its negative regulator Csk. The c-Src interacting proteins were affinity-purified from Src transformed cells using the Src SH2 domain as a ligand. LC-MS/MS analysis of the purified proteins identified general Src substrates, such as focal adhesion kinase and paxillin, and ZO-1/2 as a transformation-dependent Src target. The Csk binding proteins were analyzed by a tandem affinity purification method. In addition to the previously identified Csk binding proteins, including Cbp/PAG, paxillin, and caveolin-1, we found that ZO-1/2 could also serve as a major Csk binding protein. ZO-2 was phosphorylated concurrently with Src transformation and specifically bound to Csk in a Csk SH2 dependent manner. These results suggest novel roles for ZO proteins as Src/Csk scaffolds potentially involved in the regulation of Src transformation.  相似文献   

8.
Regulation of Src kinase activity is tightly coupled to the phosphorylation status of the C-terminal regulatory tyrosine Tyr(527), which, when phosphorylated by Csk, represses Src. Here, we demonstrate that activation of Csk through a prostaglandin E(2)-cAMP-protein kinase A (PKA) pathway inhibits Src. This inhibitory pathway is operative in detergent-resistant membrane fractions where cAMP-elevating agents activate Csk, resulting in a concomitant decrease in Src activity. The inhibitory effect on Src depends on a detergent-resistant membrane-anchored Csk and co-localization of all components of the inhibitory pathway in membrane microdomains. Furthermore, epidermal growth factor-induced activation of Src and phosphorylation of the Src substrates Cbl and focal adhesion kinase are inhibited by activation of the cAMP-PKA-Csk pathway. We propose a novel mechanism whereby G protein-coupled receptors inhibit Src signaling by activation of Csk in a cAMP-PKA-dependent manner.  相似文献   

9.
The association of the cytoskeleton with the cadherin--catenin complex is essential for strong cell-cell adhesion in epithelial cells. In this study, we have investigated the effect of microtubule organization on cell-cell adhesion in differentiating keratinocytes. When microtubules of normal human epidermal keratinocytes (NHEKs) grown in low calcium media (0.05 mM) were disrupted with nocodazole or colcemid, cell-cell adhesion was induced through relocalization of the E-cadherin-catenin-actin complex to the cell periphery. This was accompanied by actin polymerization. Also, it was found that microtubule disruption-induced cell-cell adhesion was significantly reduced in more advanced differentiated keratinocytes. For example, when NHEK cells cultured under high calcium (1.2 mM) for 8 d and then in low calcium for 1 d were treated with nocodazole, there was no induction of cell-cell adhesion. Also long-term treatment of a phorbol ester for 48 h inhibited nocodazole-induced cell-cell adhesion of NHEK. Furthermore, this nocodazole-induced cell-cell adhesion could be observed in squamous cancer cell lines (A431 and SCC-5, -9, and -25) under low calcium condition, but not in the keratinocyte cell lines derived from normal epidermis (HaCaT, RHEK). On the other hand, HaCaT cells continuously cultivated in low calcium media regained a less differentiated phenotype such as decreased expression of cytokeratin 10, and increased K5; these changes were accompanied with inducibility of cell-cell adhesion by nocodazole. Together, our results suggest that microtubule disruption can induce the cell-cell adhesion via activation of endogenous E-cadherin in non- or early differentiating keratinocytes. However, this is no longer possible in advanced terminally differentiating keratinocytes, possibly due to irreversible changes effected by cell envelope barrier formation.  相似文献   

10.
Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function.  相似文献   

11.
Csk phosphorylates Src family members at a key regulatory tyrosine in the C-terminal tail and suppresses their activities. It is not known whether Csk activity is regulated. To examine the features of Csk required for Src suppression, we expressed Csk mutants in a cell line with a disrupted csk gene. Expression of wild-type Csk suppressed Src, but Csk with mutations in the SH2, SH3, and catalytic domains did not suppress Src. An SH3 deletion mutant of Csk was fully active against in vitro substrates, but two SH2 domain mutants were essentially inactive. Whereas Src repressed by Csk was predominantly perinuclear, the activated Src in cells lacking Csk was localized to structures resembling podosomes. Activated mutant Src was also in podosomes, even in the presence of Csk. When Src was not active, Csk was diffusely located in the cytosol, but when Src was active, Csk colocalized with activated Src to podosomes. Csk also localizes to podosomes of cells transformed by an activated Src that lacks the major tyrosine autophosphorylation site, suggesting that the relocalization of Csk is not a consequence of the binding of the Csk SH2 domain to phosphorylated Src. A catalytically inactive Csk mutant also localized with Src to podosomes, but SH3 and SH2 domain mutants did not, suggesting that the SH3 and SH2 domains are both necessary to target Csk to places where Src is active. The failure of the catalytically active SH3 mutant of Csk to regulate Src may be due to its inability to colocalize with active Src.  相似文献   

12.
Altered cellular adhesion and apoptotic signaling in cardiac remodeling requires coordinated regulation of multiple constituent proteins that comprise cytoskeletal focal adhesions. One such protein activated by cardiac remodeling is related adhesion focal tyrosine kinase (RAFTK, also known as pyk2). Adenoviral-mediated expression of RAFTK in neonatal rat cardiomyocytes involves concurrent increases in phosphorylation of Src, c-Jun N-terminal kinase, and p38 leading to characteristic apoptotic changes including cleavage of poly(ADP-ribose) polymerase, caspase-3 activation, and increased DNA laddering. DNA laddering was decreased by mutation of the Tyr(402) Src-binding site in RAFTK, suggesting a central role for Src activity in apoptotic cell death that was confirmed by adenoviral-mediated Src expression. Multiple apoptotic signaling cascades are recruited by RAFTK as demonstrated by prevention of apoptosis using caspase-3 inhibitor IV (caspase-3 specific inhibitor), PP2 (Src-specific kinase inhibitor), or Csk (cellular negative regulator for Src), as well as dominant negative constructs for p38beta or MKP-1. These RAFTK-mediated phenotypic characteristics are prevented by concurrent expression of wild-type or a phosphorylation-deficient paxillin mutated at Tyr(31) and Tyr(118). Wild-type or mutant paxillin protein accumulation in the cytoplasm has no overt effect upon cell structure, but paxillin accumulation prevents losses of myofibril organization as well as focal adhesion kinase, vinculin, and paxillin protein levels mediated by RAFTK. Apoptotic signaling cascade inhibition by paxillin indicates interruption of signaling proximal to but downstream of RAFTK activity. Chronic RAFTK activation in cardiac remodeling may represent a maladaptive reactive response that can be modulated by paxillin, opening up novel possibilities for inhibition of cardiomyocyte apoptosis and structural degeneration in heart failure.  相似文献   

13.
Rac1 is a small GTPase that regulates the actin cytoskeleton but also other cellular processes. To investigate the function of Rac1 in skin, we generated mice with a keratinocyte-restricted deletion of the rac1 gene. Rac1-deficient mice lost nearly all of their hair within a few weeks after birth. The nonpermanent part of mutant hair follicles developed constrictions; lost expression of hair follicle-specific keratins, E-cadherin, and alpha6 integrin; and was eventually removed by macrophages. The permanent part of hair follicles and the sebaceous glands were maintained, but no regrowth of full-length hair follicles was observed. In the skin of mutant mice, epidermal keratinocytes showed normal differentiation, proliferation, cell-cell contacts, and basement membrane deposition, demonstrating no obvious defects of Rac1-deficient epidermis in vivo. In vitro, Rac1-null keratinocytes displayed a strong spreading defect and slightly impaired adhesion. These data show that Rac1 plays an important role in sustaining the integrity of the lower part of hair follicles but not in maintenance of the epidermis.  相似文献   

14.
Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.  相似文献   

15.
Insulin has pleiotropic effects on the regulation of cell physiology through binding to its receptor. The wide variety of tyrosine phosphorylation motifs of insulin receptor substrate 1 (IRS-1), a substrate for the activated insulin receptor tyrosine kinase, may account for the multiple functions of insulin. Recent studies have shown that activation of the insulin receptor leads to the regulation of focal adhesion proteins, such as a dephosphorylation of focal adhesion kinase (pp125FAK). We show here that C-terminal Src kinase (Csk), which phosphorylates C-terminal tyrosine residues of Src family protein tyrosine kinases and suppresses their kinase activities, is involved in this insulin-stimulated dephosphorylation of focal adhesion proteins. We demonstrated that the overexpression of Csk enhanced and prolonged the insulin-induced dephosphorylation of pp125FAK. Another focal adhesion protein, paxillin, was also dephosphorylated upon insulin stimulation, and a kinase-negative mutant of Csk was able to inhibit the insulin-induced dephosphorylation of pp125FAK and paxillin. Although we have shown that the Csk Src homology 2 domain can bind to several tyrosine-phosphorylated proteins, including pp125FAK and paxillin, a majority of protein which bound to Csk was IRS-1 when cells were stimulated by insulin. Our data also indicated that tyrosine phosphorylation levels of IRS-1 appear to be paralleled by the dephosphorylation of the focal adhesion proteins. We therefore propose that the kinase activity of Csk, through the insulin-induced complex formation of Csk with IRS-1, is involved in insulin's regulation of the phosphorylation levels of the focal adhesion proteins, possibly through inactivation of the kinase activity of c-Src family kinases.  相似文献   

16.
We have examined the expression, localization, and function of beta 1 integrins on cultured human epidermal keratinocytes using polyclonal and monoclonal antibodies against the beta 1, alpha 2, alpha 3, and alpha 5 integrin subunits. The beta 1 polypeptide, common to all class 1 integrins, was localized primarily in areas of cell-cell contacts of cultured keratinocytes, as were alpha 2 and alpha 3 polypeptides, suggesting a possible role in cell-cell adhesion for these integrin polypeptides. In contrast, the fibronectin receptor alpha 5 subunit showed no such accumulations in regions of cell-cell contact but was more diffusely distributed in the keratinocyte plasma membrane, consistent with the absence of fibronectin at cell-cell contact sites. Colonies of cultured keratinocytes could be dissociated by treatment with monoclonal antibody specific to the beta 1 polypeptide. Such dissociation of cell-cell contacts also occurred under conditions where the monoclonal antibody had no effect on cell-substrate adhesion. Therefore, beta 1 integrin-dependent cell-cell adhesion can be inhibited without affecting other cell-adhesive interactions. Antibody treatment of keratinocytes maintained in either low (0.15 mM) or high (1.2 mM) CaCl2 also resulted in the loss of organization of intracellular F-actin filaments and beta 1 integrins, even when the anti-beta 1 monoclonal antibody had no dissociating effect on keratinocyte colonies at the higher calcium concentration. Our results indicate that beta 1 integrins play roles in the maintenance of cell-cell contacts between keratinocytes and in the organization of intracellular microfilaments. They suggest that in epithelial cells integrins can function in cell-cell interactions as well as in cell-substrate adhesion.  相似文献   

17.
Integrin-linked kinase (ILK) is a multidomain protein involved in cell motility and cell-extracellular matrix interactions. ILK is found in integrin-containing focal adhesions in undifferentiated primary epidermal keratinocytes. Induction of keratinocyte differentiation by treatment with Ca(2+) triggers formation of cell-cell junctions, loss of focal adhesions, and ILK distribution to cell borders. We now show that Ca(2+) treatment of keratinocytes induces rapid (6 h) localization of tight junction (TJ) proteins. The kinetics of ILK movement toward the cell periphery mimics that of AJ components, suggesting that ILK plays a role in the early formation of cell-cell contacts. Whereas the N terminus in ILK mediates localization to cell borders, expression of an ILK deletion mutant incapable of localizing to the cell membrane (ILK 191-452) interferes with translocation of E-cadherin/beta-catenin to cell borders, precluding Ca(2+)-induced AJ formation. Cells expressing ILK 191-452 also fail to form TJ and sealed cell-cell borders and do not form epithelial sheets. Thus, we have uncovered a novel role for ILK in epithelial cell-cell adhesion, independent of its well-established role in integrin-mediated adhesion and migration.  相似文献   

18.
Cell adhesion is an important process during morphogenesis, differentiation, and homeostasis in cell biology. The role of vascular endothelial growth factor (VEGF) in cell adhesion of keratinocytes is unclear. In our study, a human keratinocyte cell line, HaCaT cells, which mimics various properties of normal epidermal keratinocytes, was included to elucidate the effect of VEGF on cell-cell adhesion and cell-plate adhesion. Expression of adhesion molecules account for cell adhesion and signal transduction pathways involved in the effect of VEGF on adhesion of HaCaT cells were further investigated. Significant increase of cell-cell adhesion but decrease of the cell-plate adhesion of HaCaT cells induced by VEGF(165) was detected. VEGF increases expression of E-cadherin, but inhibits expression of integrin α6β4 subunit. VEGF(165) at 100?ng/ml activates extracellular signal-regulated kinase. These changes of cell adhesion induced by VEGF were blocked by ERK and VEGFR-2 inhibitor. Our findings suggest that VEGF may modulate cell adhesion of HaCaT cells partly through activation of VEGFR-2/ERK1/2 signaling pathways.  相似文献   

19.
20.
Epithelialization, a major component of wound healing, depends on keratinocyte adhesion and migration. Initiation of migration relies upon the ability of keratinocytes to free themselves from neighboring cells and basement membrane. The local cytotransmitter acetylcholine (ACh) controls keratinocyte adhesion and locomotion through different classes of ACh receptors (AChR). In this study, we explored signaling pathways downstream of the alpha9 AChR subtype that had been shown to control cell shape and cytoplasm mobility. Inactivation of alpha9 signaling by pharmacologic antagonism and RNA interference in keratinocyte cultures and null mutation in knockout mice delayed wound re-epithelialization in vitro and in vivo, respectively, and diminished the extent of colony scattering and cell outgrowth from the megacolony. Although keratinocytes at the leading edge elongated, produced filopodia and moved out, most of them remained anchored to the substrate by long cytoplasmic processes that stretched during their migration instead of retracting the uropod. Since the velocity of keratinocyte migration was not altered, we investigated the role of alpha9 in assembly/disassembly of the cell-cell and cell-matrix adhesion complexes. Stimulation of alpha9 upregulated in a time-dependent fashion phosphorylation of the adhesion molecules comprising focal adhesions (FAK, paxillin) and intercellular junctions (beta-catenin, desmoglein 3) as well as cytokeratins. Stimulation of alpha9 was associated with activation of phospholipase C, Src, EGF receptor kinase, protein kinase C, Rac and Rho, whereas inhibition of this receptor interfered with phosphorylation of adhesion and cytoskeletal proteins, and also altered cell-cell cohesion. We conclude that signaling through alpha9 AChR is critical for completion of the very early stages of epithelialization. By activating alpha9 AChR, ACh can control the dynamics and strength of cell-cell cohesion, disabling of a trailing uropod and disassembly and reassembly of focal adhesions, thus facilitating crawling locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号