首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heavy enzyme of gramicidin S synthetase was purified to an almost homogeneous state by a combination of ammonium sulfate fractionation, ornithine-Sepharose 4B chromatography, DEAE-cellulose chromatography, and Ultrogel AcA 22 chromatography. The enzyme was proved to be essentially homogeneous by ultracentrifugation and polyacrylamide disc gel electrophoresis. The heavy enzymes of gramicidin S synthetase from various groups of mutant strains lacking the ability to form gramicidin S were also purified to a similar extent. The sedimentation rates of the purified enzymes from a wild strain and the mutant strains (BI-3, BII-3, BI-9) were studied by analytical centrifugation and sucrose density gradient centrifugation. The enzymes from the wild strain and these mutant strains were all found to have an S20,W value of 12.2 at a protein concentration of 2.5 mg per ml. These results strongly suggest that the failure of specific amino acid activation in the heavy enzyme of these gramicidin-lacking mutants might be due to some modification at the active center of the corresponding amino acid-activating enzyme rather than to a complete absence of the amino acid-activating enzyme protein in the heavy enzyme.  相似文献   

2.
The phenylalanine-activating and/or-racemizing enzyme, i.e., the light enzyme, of gramicidin S synthetase was purified to a homogenous state by D-phenylalanine-Sepharose 4B chromatography from a wild and some gramicidin S-lacking mutant strains of Bacillus brevis. The light enzyme obtained from a mutant strain E-1 could activate phenylalanine but not racemize it, and had no phenylalanine-dependent ATP-[14C]AMP exchange activity, whereas the same enzyme obtained from other mutants and the wild strain had all three activities. Furthermore, the light enzyme of the mutant E-1 could form only acid-labile enzyme-bound phenylalanine, while the same fraction of the wild strain carried half of the enzyme-bound phenylalanine as acid-labile adenylate and half as a acid-stable thioester. These results suggest that the thiol site of the light enzyme of mutant E-1 might be damaged.  相似文献   

3.
Twenty mutants of Bacillus brevis which were deficient in gramicidin S formation were isolated by N-methyl-N′-nitrosoguanidine treatment. In addition to three groups which have been previously classified, further two groups were established according to their characteristics of amino acid activating enzymes concerned with gramicidin S formation. The fourth group mutants had a phenylalanine activating enzyme, but they had an enzyme complex from which one specific enzyme among proline, valine and leucine activating enzymes was deleted. Some of them also the ability to form d-phenylalanyl-l-prolyl diketpiperazine (DKP) even though they had phenylalanine and proline activating enzymes. The fifth group mutants contained both a phenylalanine activating enzyme and a complex of prodine, valine, ornithine and leucine activating enzymes like as a wild strain, but did not synthesize gramicidin S, and also one of them could not form even DKP.Combination of enzymes from DKP (+) mutants of the fourth or fifth groups with the first group mutant which had an intact proline, valine, ornithine and leucine activating enzyme complex showed gramicidin S formation, but the combination of enzymes from DKP (−) mutants except a proline activating enzyme minus mutant with the first group mutant could not synthesize gramicidin S.  相似文献   

4.
The sulfhydryl groups required for the catalytic activity of gramicidin S synthetase of Bacillus brevis and Escherichia coli isoleucyl tRNA synthetase were compared. In gramicidin S synthetase 2(GS 2), about four sulfhydryl groups react rapidly with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or N-ethylmaleimide (NEM), and are essential for gramicidin S formation in the presence of gramicidin S synthetase 1 (GS 1). These sulfhydryl groups are protected against DTNB and NEM reactions by the preincubation of GS 2 with amino acid substrates in the presence of ATP and MgCl2, like the sulfhydryl groups that react rapidly with DTNB or NEM and are required for the catalytic activity of GS 1 and isoleucyl tRNA synthetase. In GS 2, GS 1, and isoleucyl tRNA synthetase, the sulfhydryl group that reacts rapidly with NEM and is required for the catalytic activity is involved in the amino acid binding as a thioester. In isoleucyl tRNA synthetase, it is suggested that isoleucine may be transferred from the isoleucine thioester enzyme complex to tRNA by a mechanism similar to that proposed for gramicidin S synthetase.  相似文献   

5.
Gramicidin S synthetase 2 (GS2) derived from Bacillus brevis is a multifunctional single polypeptide (Mr 280,000) with a 4'-phosphopantetheine residue covalently bound to the enzyme. When GS2 was treated with trypsin or chymotrypsin, fragments with some activity were liberated. The molecular mass of the L-proline activating fragment was 114 kDa on SDS-PAGE. This fragment, when incubated with gramicidin S synthetase 1 (GS1) in the presence of phenylalanine and proline, produced D-Phe-L-Pro dipeptide. The fragment accepted D-phenylalanine from GS1 in the absence of L-proline. The L-proline activating fragment was shown to lack pantothenic acid by microbiological assay. On the other hand, the L-leucine activating fragment, which was partially purified, contained a large amount of pantothenic acid, although it did not form the D-Phe-L-Pro dipeptide. These results indicate that the L-proline activating site is located near an acceptor site for D-phenylalanine on GS2, but that it is not adjacent to a 4'-phosphopantetheine group. The N-terminal sequence (15 amino acid residues) of the L-proline activating fragment obtained by trypsin treatment was identical with that of GS2, indicating that the L-proline activating site is located at the N-terminus of the native synthetase. The N-terminal sequence of GS2 has been matched with the amino acid sequence deduced from the nucleotide sequence 71 bp downstream of the stop codon of the GS1 gene except that the first initiator methionine was not detected.  相似文献   

6.
We have demonstrated that gramicidin S synthetase 1 (GS 1), phenylalanine racemase [EC 5.1.1.11], of Bacillus brevis catalyzes the exchange between a proton in the medium and alpha-hydrogen of phenylalanine in the course of the racemase reaction by using tritiated water or L-phenyl[2,3-3H]alanine. GS 1 from some gramicidin S non-producing mutants of B. brevis lacking phenylalanine racemase activity did not catalyze the tritium exchange reaction. The proton exchange between phenylalanine bound as thioester on the GS 1-phenylalanine complex and water in the medium was detected, but 5,5'-dithiobis(2-nitrobenzoic acid)-modified complex lacked both the proton exchange and phenylalanine racemase activity. It is suggested that a base group, probably a sulfhydryl group, on the enzyme functions as proton donor and acceptor during the phenylalanine racemase reaction.  相似文献   

7.
The reactive thioester complexes of gramicidin S synthetase with substrate amino acids and intermediate peptides are slowly hydrolyzed in neutral buffer solutions under mild conditions. Fully active enzyme is recovered. These processes are strongly accelerated by certain thiol protective agents. In the presence of 1 mM dithioerythritol the half-life times of these hydrolysis reactions are in the range of 1-90 h at 3 degrees C. The thioester complex of gramicidin S synthetase 2 (GS2, the heavy enzyme) with the tripeptide DPhe-Pro-Val is distinguished by the highest stability of all these intermediates. A different decomposition pattern is observed for the thioester complex of GS2 with LOrn. Here 3-amino-2-piperidone (cyclo-LOrn) is formed in a rapid cyclization reaction. This product specifically blocks the activation center of GS2 for LOrn at the thioester binding site. All other activation reactions of gramicidin S synthetase are unaffected. A procedure for a specific labelling of the reaction centers of the multienzyme is outlined.  相似文献   

8.
The glutamine synthetase activity in the wild type and high-light-tolerant mutant of Anacystis exhibited differential response to the increasing light intensity (2–40 W/m2). As evident from the results, the glutamine synthetase (GS) activity in the wild type is more dependent on respiration, whereas the GS enzyme in the mutant cells derived its carbon and energy from photosynthesis. Further, results revealed that the reduced GS activity in the wild-type cells under the high-light stress was accompanied by high aspartate amino transferase (AST/GOT) activity and low alanine amino transferase (ALT/GPT) activity. On the contrary, high GS activity in the mutant cells was accompanied by low AST/GOT enzyme activity and high ALT/GPT activity. It was inferred that mutant and wild-type cells adapt to the high-light stress by different mechanisms.  相似文献   

9.
Kinetic and binding studies have shown that Lys39 of Escherichia coli ADPglucose synthetase is involved in binding of the allosteric activator. In order to study structure-function relationships at the activator binding site, this lysine residue was substituted by glutamic acid (Lys39----Glu) by site-directed mutagenesis. The resultant mutant enzyme (E-39) showed activation kinetics different from those of the wild-type enzyme. The level of activation of the E-39 enzyme by the major activators of E. coli ADPglucose synthetase, 2-phosphoglycerate, pyridoxal phosphate, and fructose-1,6-phosphatase was only approximately 2-fold compared to activation of 15- to 28-fold respectively, for the wild-type enzyme. NADPH, an activator of the wild-type enzyme, was unable to activate the mutant enzyme. In addition, the concentrations of the above activators necessary to obtain 50% of the maximal stimulation of enzyme activity (A0.5) were 5-, 9-, and 23-fold higher, respectively, than those for the wild-type enzyme. The E-39 enzyme also had a lower apparent affinity (S0.5) for the substrates ATP and MgCl2 than the wild-type enzyme and the values obtained in the presence or absence of activator were similar. The concentration of inhibitor giving 50% of enzyme activity (I0.5) was also similar for the E-39 enzyme in the presence or absence of activator. These results indicate that the E-39 mutant enzyme is not effectively activated by the major activators of the E. coli ADPglucose synthetase wild-type enzyme, and that this amino acid substitution also prevents the allosteric effect that the activator has on the wild-type enzyme kinetics, either increasing its apparent affinity for the substrates or modulating the enzyme's sensitivity to inhibition.  相似文献   

10.
Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to germination of their spores produced in several media. Germination initiation occurred in the presence of nutrient broth orL-alanine but not with inosine, glucose, glycerol or fructose; the process was activated by heat. Parental and mutant spores behaved similarly in these experiments. During outgrowth, parental spores remained in this phase of germination much longer than did mutant spores, but only when the parental spores had been harvested from a sporulation medium where significant gramicidin S synthesis had occurred. When parental spores were extracted or treated with an enzyme that hydrolyzes gramicidin S, rapid outgrowth occurred. Adding exogenous gramicidin S or the extract from parental spores to mutant spores lengthened the outgrowth in a dose-dependent manner. The uptake of labeledL-alanine by parental spores was delayed compared to mutant spores in the presence or absence of chloramphenicol. These data suggest a mechanism of action for gramicidin S whereby it interferes in membrane function, such as transport or energy metabolism, in outgrowing spores.Abbreviations GS Gramicidin S - CFU colony-forming units  相似文献   

11.
In gramicidin S synthetase 2 (GS 2) from Bacillus brevis, L-proline, L-valine, L-ornithine, and L-leucine activations to aminoacyl adenylates are progressively inhibited by phenylglyoxal. The inactivation of GS 2 obeys pseudo-first-order kinetics. ATP completely prevents inactivation of GS 2 by phenylglyoxal, whereas amino acids only partially prevent it. In the presence of ATP, four arginine residues per mol of GS 2 are protected from modification by phenylglyoxal as determined by amino acid analysis and the incorporation of [7-14C]phenylgloxal into the enzyme protein, indicating that a single arginine residue is necessary for each amino acid activation. In isoleucyl tRNA synthetase from Escherichia coli, phenylglyoxal inhibits activation of L-isoleucine to isoleucyl adenylate. ATP completely prevents inactivation, although isoleucine only partially prevents it. One arginine residue of isoleucyl tRNA synthetase is protected by ATP from modification by phenylglyoxal, suggesting that a single arginine residue is essential for isoleucine activation. These results support the involvement of arginine residues in ATP binding with GS 2 or isoleucyl tRNA synthetase, and thus indicate that arginine residues of amino acid activating enzymes are essential for the formation of aminoacyl adenylates in both nonribosomal and ribosomal peptide biosynthesis.  相似文献   

12.
13.
Pantothenic acid and beta-alanine are metabolic intermediates in coenzyme A biosynthesis. Using a functional screen in the yeast Saccharomyces cerevisiae, a putative amine oxidase, encoded by FMS1, was found to be rate-limiting for beta-alanine and pantothenic acid biosynthesis. Overexpression of FMS1 caused excess pantothenic acid to be excreted into the medium, whereas deletion mutants required beta-alanine or pantothenic acid for growth. Furthermore, yeast genes ECM31 and YIL145c, which both have structural homology to genes of the bacterial pantothenic acid pathway, were also required for pantothenic acid biosynthesis. The homology of FMS1 to FAD-containing amine oxidases and its role in beta-alanine biosynthesis suggested that its substrates are polyamines. Indeed, we found that all the enzymes of the polyamine pathway in yeast are necessary for beta-alanine biosynthesis; spe1Delta, spe2Delta, spe3Delta, and spe4Delta are all beta-alanine auxotrophs. Thus, contrary to previous reports, yeast is naturally capable of pantothenic acid biosynthesis, and the beta-alanine is derived from methionine via a pathway involving spermine. These findings should facilitate the identification of further enzymes and biochemical pathways involved in polyamine degradation and pantothenic acid biosynthesis in S. cerevisiae and raise questions about these pathways in other organisms.  相似文献   

14.
Triploid and tetraploid Saccharomyces strains containing different combinations of a gua-1 mutant allele and the corresponding wild type were prepared. The cultivation of the different strains in media upon which the mutant fails to grow leads to a pronounced growth rate response to the dosage of the wild-type allele. Proportionality between the specific activity of the guanosine 5'-monophosphate synthetase and the wild-type dosage was reavealed. Inosine 5'-monophosphate dehydrogenase, the precursor enzyme in the pathway, is derepressed in a sigmoid manner when the wild-type dosage is reduced, whereas the activity of cytosine deaminase, investigated as a reference enzyme, is less affected.  相似文献   

15.
The cytoplasmic leucyl-tRNA synthetases of Neurospora crassa wild type (grown at 37 degrees C) and mutant (grown at 28 degrees C) were purified approximately 1770-fold and 1440-fold respectively. Additional enzyme preparations were carried out with mutant cells grown for 24 h at 28 degrees C and transferred then to 37 degrees C for 10-70 h of growth. The mitochondrial leucyl-tRNA synthetase of the wild type was purified approximately 722-fold. The mitochondrial mutant enzyme was found only in traces. The cytoplasmic leucyl-tRNA synthetase from the mutant (grown at 37 degrees C) in vivo is subject of a proteolytic degradation. This leads to an increased pyrophosphate exchange, without altering aminoacylation. Proteolysis in vitro by trypsin or subtilisin of isolated cytoplasmic wild-type and mutant leucyl-tRNA synthetases, however, did not establish and difference in the degradation products and in their catalytic properties. Comparing the cytoplasmic wild-type and mutant enzymes (grown at 28 degrees C) via steady-state kinetics did not show significant differences between these synthetases either. The rate-determining step appears to be after the transfer of the aminoacyl group to the tRNA, e.g. a conformational change or the release of the product. Besides leucine only isoleucine is activated by the enzymes with a discrimination of approximately 1:600; however, no Ile-tRNALeu is released. Similarly these enzymes, when tested with eight ATP analogs, cannot be distinguished. For both enzymes six ATP analogs are neither substrates nor inhibitors. Two analogs are substrates with identical kinetic parameters. The mitochondrial wild-type leucyl-tRNA synthetase is different from the cytoplasmic enzyme, as particularly exhibited by aminoacylating Escherichia coli tRNALeu but not N. crassa cytoplasmic tRNALeu. The presence of traces of the analogous mitochondrial mutant enzyme could be demonstrated. Therefore, the difference between wild-type and mutant leu-5 does not rest in the catalytic properties of the cytoplasmic leucyl-tRNA synthetases. Differences in other properties of these enzymes are not excluded. In contrast the activity of the mitochondrial leucyl-tRNA synthetase of the mutant is approximately 1% of that of the wild-type enzyme.  相似文献   

16.
A fragment encoding proline-activating domain (grs 2-pro) of gramicidin S synthetase 2 (GS 2) was found in an 8.1-kilobase pairs (kb) DNA fragment of Bacillus brevis Nagano, which contained the full length of GS 1 gene (grs 1). The clones designated GS719 and GS708, which expressed gramicidin S synthetase 1, were elucidated to express immunoreactive proteins to GS 2 antibodies with approximate molecular weights of 115,000, 105,000 (GS719), and 110,000 (GS708). The partial purification of the gene products of these clones was carried out using DEAE-Sepharose CL-6B column chromatography. The immunoreactive proteins to GS 2 antibodies were separated from gramicidin S synthetase 1 protein and had specific proline-dependent ATP-32PPi exchange activity. The nucleotide sequence for the proline-activating domain in the 8.1-kb insert was determined. This fragment was 2,879 base pairs long, and encoded 959 amino acids. The calculated molecular weight of 111,671 was consistent with the apparent molecular weight of 115,000 found in SDS-PAGE of the immunoreactive products to GS 2 antibodies. The open reading frame for this protein followed grs 1 gene, though two were separated by a 73-base pair noncoding sequence, and remained open to the end.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Gramicidin S is known to prolong the outgrowth stage of spore germination in the producing culture. Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to cell-surface hydrophobicity and germination of their spores. Parental spores were hydrophobic as determined by adhesion to hexadecane, whereas mutant spores showed no affinity to hexadecane. Addition of gramicidin S to mutant spores resulted in a high cell surface hydrophobicity and a delay in germination outgrowth. The hydrophobicity of parental spores was retained throughout most of the germination period. Hydrophobicity was lost as outgrowing spores entered into the stage of vegetative growth. The data indicate that gramicidin S is responsible for the hydrophobicity of B. brevis spores. It is suggested that in making spores hydrophobic, the antibiotic plays a role in concentrating the spores at interfaces where there is a higher probability of finding nutrients for germination and growth.Abbreviation GS Gramicidin S  相似文献   

18.
The regulatory properties of three key enzymes in the phenylalanine biosynthetic pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase (DAHP synthetase) [EC 4.1.2.15], chorismate mutase [EC 5.4.99.5], and prephenate dehydratase [prephenate hydro-lyase (decarboxylating), EC 4.2.1.51] were compared in three phenylalanine-excreting mutants and the wild strain of Brevibacterium flavum. Regulation of DAHP synthetase by phenylalanine and tyrosine in these mutants did not change at all, but the specific activities of the mutant cell extracts increased 1.3- to 2.8-fold, as reported previously (1). Chorismate mutase activities in both the wild and the mutant strains were cumulatively inhibited by phenylalanine and tyrosine and recovered with tryptophan, while the specific activities of the mutants increased 1.3- to 2.8-fold, like those of DAHP synthetase. On the other hand, the specific activities of prephenate dehydratase in the mutant and wild strains were similar, when tyrosine was present. While prephenate dehydratase of the wild strain was inhibited by phenylalanine, tryptophan, and several phenylalanine analogues, the mutant enzymes were not inhibited at all but were activated by these effectors. Tyrosine activated the mutant enzymes much more strongly than the wild-type enzyme: in mutant 221-43, 1 mM tyrosine caused 28-fold activation. Km and the activation constant for tyrosine were slightly altered to a half and 6-fold compared with the wild-type enzyme, respectively, while the activation constants for phenylalanine and tryptophan were 500-fold higher than the respective inhibition constants of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 x 10(5), a half of that of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 X 10(5) a half of that of the wild type enzyme, while in the presence of tyrosine, phenylalanine, or tryptophan, it increased to that of the wild-type enzyme. Immediately after the mutant enzyme had been activated by tyrosine and then the tyrosine removed, it still showed about 10-fold higher specific activity than before the activation by tyrosine. However, on standing in ice the activity gradually fell to the initial level before the activation by tyrosine. Ammonium sulfate promoted the decrease of the activity. On the basis of these results, regulatory mechanisms for phenylalanine biosynthesis in vivo as well as mechanisms for the phenylalanine overproduction in the mutants are discussed.  相似文献   

19.
T. Stein  J. Vater 《Amino acids》1996,10(3):201-227
Summary The biosynthesis of microbial bioactive peptides is accomplished nonribosomally by large multifunctional enzymes consisting of linearly arranged building blocks of 1,000–1,500 amino acid residues. Each of these units acts as an independent enzyme which catalyzes the selection, activation, and in some cases modification (epimerization, N-methylation) of its cognate amino acid, as well as the elongation of the peptide product. The specific linkage of amino acid activating modules upon such polyenzymes defines the sequence of the peptide product. A series of functional domains could be identified upon an amino acid activating module which are involved in the sequential reactions in nonribosomal peptide biosynthesis.Abbrevations aaRS aminoacyl tRNA synthetase - GS1 gramicidin S synthetase 1 (phenylalanine racemase) - GS2 gramicidin S synthetase 2 - TY1 and 2 tyrocidine synthetase 1 and 2 - ACV [-(l--aminoadipyl)-l-cysteinyl-d-valine] - FITC fluorescein 5-isothiocyanate - FAB-, ESI-MS fast atom bombardment-, electrospray ionization-mass spectrometry - Pan 4-phosphopantetheine - NMR nuclear magnetic resonance - ACP acyl carrier protein - SAM S-adenosyl-l-methionine - CM carboxy-methyl - NES Nethylsuccinimido  相似文献   

20.
Gramicidin S synthetase, the enzyme complex catalyzing the biosynthesis of the antibiotic gramicidin S in Bacillus brevis, is subject to O(2)-dependent in vivo inactivation during exponential aerobic growth after reaching a peak in specific activity. The five amino acid substrates of the synthetase are capable of stabilizing its activity to varying degrees in whole cells shaken aerobically. Depending on the time of cell harvesting before, during, or after the peak in intracellular gramicidin S synthetase specific activity, the enzyme has a long, medium, or short half-life, respectively. The kinetic profiles of gramicidin S synthetase in B. brevis cells indicate that both the kinetics of synthetase loss and the degree of its amino-acid-mediated stabilization are a strong function of the cells' physiological development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号