首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In vitro antagonistic effects of rhizobacteria associated with Coffea arabica L. against some fungal coffee pathogens were studied. The aims were to screen indigenous coffee‐associated isolates for their inherent antagonistic potential against major coffee wilt diseases induced by Fusarium spp. Antagonistic effects, siderophore, HCN and lytic enzyme production were determined on standard solid media. Chemical methods were employed to categorize the major types of siderophores. From a total of 212 rhizobacterial isolates tested, over 10 % (all Pseudomonas and Bacillus spp.) exhibited remarkable inhibition against Fusarium spp. One isolate AUPB24 (P. chlororaphis) showed maximum inhibition of mycelial growth against all fungal pathogens tested, whereas other isolates were mostly inhibitory to F. stilboides and F. oxysporum. The isolate AUBB20 (B. subtilis) was most antagonistic to F. xylarioides. Of the rhizobacterial isolates tested, 67 % produced siderophores and 35 % produced HCN. Many strains (all Pseudomonas spp.) produced siderophores of the hydroxamate type and only a small proportion produced those of the catecholate type. Few antagonists showed chitinase activity. The production of siderophores and HCN by Pseudomonas spp., lipase and protease by all antagonists and β‐1,3‐glucanase by several Bacillus spp. could be considered the major mechanisms involved in the inhibition of fungal growth. The in vitro results provide the first evidence of an antagonistic effect of coffee‐associated rhizobacteria against the emerging fungal coffee pathogens F. stilboides and F. xylarioides and indicate the potential of both bacterial groups for biological control of coffee wilt diseases.  相似文献   

2.
The life-span of coffee seeds is extended when seeds are storedwith high moisture content. Germination in darkness is alwayshigher than in the light. Exogenous gibberellic acid and abscisicacid inhibit germination while kinetin reverses this inhibitoryeffect. Low levels of endogenous gibberellin- and abscisic acid-likeand high levels of cytokinin-like substances favour germinationwhile the opposite combination of regulators delays germination.  相似文献   

3.
4.
Nazario GM  Lovatt CJ 《Plant physiology》1993,103(4):1195-1201
The capacity of Coffea arabica leaves (5- x 5-mm pieces) to synthesize de novo and catabolize purine nucleotides to provide precursors for caffeine (1,3,7-trimethylxanthine) was investigated. Consistent with de novo synthesis, glycine, bicarbonate, and formate were incorporated into the purine ring of inosine 5[prime]-monophosphate (IMP) and adenine nucleotides ([sigma]Ade); azaserine, a known inhibitor of purine de novo synthesis, inhibited incorporation. Activity of the de novo pathway in C. arabica per g fresh weight of leaf tissue during a 3-h incubation period was 8 [plus or minus] 4 nmol of formate incorporated into IMP, 61 [plus or minus] 7 nmol into [sigma]Ade, and 150 nmol into caffeine (the latter during a 7-h incubation). Coffee leaves exhibited classical purine catabolism. Radiolabeled formate, inosine, adenosine, and adenine were incorporated into hypoxanthine and xanthine, which were catabolized to allantoin and urea. Urease activity was demonstrated. Per g fresh weight, coffee leaf squares incorporated 90 [plus or minus] 22 nmol of xanthine into caffeine in 7 h but degraded 102 [plus or minus] 1 nmol of xanthine to allantoin in 3 h. Feedback control of de novo purine biosynthesis was contrasted in C. arabica and Cucurbita pepo, a species that does not synthesize purine alkaloids. End-product inhibition was demonstrated to occur in both species but at different enzyme reactions.  相似文献   

5.
An unusual population of Meloidogyne hapla, earlier thought to be an undescribed species, was found causing large galls, without adventitious roots, and substantial damage to coffee in Maui, Hawaii. Only in Brazil had similar damage to coffee been reported by this species. Unlike M. exigua from South and Central America, this population reproduced well on coffee cv. Mokka and M. incognita-susceptible tomato but poorly on tomato with the Mi resistance gene. Characterization included SEM images, esterase isozymes, and five DNA sequences: i) the D3 segment of the large subunit (LSU-D3 or 28S) rDNA, ii) internal transcribed spacer (ITS-1) rDNA, iii) intergenic spacer (IGS) rDNA, iv) the mitochondrial interval from cytochrome oxidase (CO II) to 16S mtDNA, and v) the nuclear gene Hsp90. Sequences for ITS-1, IGS, and COII were similar to other M. hapla populations, but within species ITS-1 variability was not less than among species. One LSU-D3 haplotype was similar to a previously analyzed population with two minor haplotypes. Hsp90 exhibited some variation between Maryland and Hawaiian populations distinct from other species. Females were narrow with wide vulval slits, large interphasmidial distances, and more posterior excretory pores; 20% of perineal patterns had atypical perivulval lines. Males had a low b ratio (<12 µm). Juveniles had a short distance between stylet and dorsal gland orifice. Juvenile body length was short (<355 µm) and was different between summer and winter populations.  相似文献   

6.
7.
8.
The sequential pattern of coffee flowering is a major constraint that directly affects productivity, increases harvest costs, and generates a final product of lower quality for mixing dry fruits with ripe and unripe ones. The objective of this work was to identify and analyze one of the main genes involved in flowering regulation, FLOWERING LOCUS C (FLC) in coffee (Coffea arabica L.). The identification of this gene was conducted in silico using a coffee EST database (CAFEST) and bioinformatics tools. Quantitative PCR results suggest that the identified CaFLC-like homologue is directly involved in flowering regulation in coffee. This expands our knowledge on evolutionary conservation of flowering pathways in dicot species. The functional studies of CaFLC-like with mutants of a more tractable species will lead to a better understanding of the molecular regulation as well as the specific functions of each gene flowering during floral induction in coffee.  相似文献   

9.
Precise modelling of the influence of climate change on Arabica coffee is limited; there are no data available for indigenous populations of this species. In this study we model the present and future predicted distribution of indigenous Arabica, and identify priorities in order to facilitate appropriate decision making for conservation, monitoring and future research. Using distribution data we perform bioclimatic modelling and examine future distribution with the HadCM3 climate model for three emission scenarios (A1B, A2A, B2A) over three time intervals (2020, 2050, 2080). The models show a profoundly negative influence on indigenous Arabica. In a locality analysis the most favourable outcome is a c. 65% reduction in the number of pre-existing bioclimatically suitable localities, and at worst an almost 100% reduction, by 2080. In an area analysis the most favourable outcome is a 38% reduction in suitable bioclimatic space, and the least favourable a c. 90% reduction, by 2080. Based on known occurrences and ecological tolerances of Arabica, bioclimatic unsuitability would place populations in peril, leading to severe stress and a high risk of extinction. This study establishes a fundamental baseline for assessing the consequences of climate change on wild populations of Arabica coffee. Specifically, it: (1) identifies and categorizes localities and areas that are predicted to be under threat from climate change now and in the short- to medium-term (2020–2050), representing assessment priorities for ex situ conservation; (2) identifies ‘core localities’ that could have the potential to withstand climate change until at least 2080, and therefore serve as long-term in situ storehouses for coffee genetic resources; (3) provides the location and characterization of target locations (populations) for on-the-ground monitoring of climate change influence. Arabica coffee is confimed as a climate sensitivite species, supporting data and inference that existing plantations will be neagtively impacted by climate change.  相似文献   

10.
We aimed to evaluate the currently used allometric models, as well as to propose a reliable and accurate model using non-destructive measurements of leaf length (L) and/or width (W), for estimating the area of leaves of eight field-grown coffee cultivars. For model construction, a total of 1563 leaves were randomly selected from different levels of the tree canopies and encompassed the full spectrum of measurable leaf sizes (0.3–263 cm2) for each genotype. Power models better fit coffee leaf area (LA) than linear models. To validate the model, an independent data set of 388 leaves was used. We demonstrated that the currently used allometric models are biased, underestimating the area of a coffee leaf. We developed a single power model     based on two leaf dimensions [LA = 0.6626 (LW)1.0116; standard errors: β0 = 0.0064, β1 = 0.0019; R2 = 0.996] with high precision and accuracy, random dispersion pattern of residuals and also unbiased, irrespective of cultivar and leaf size and shape. Even when the L (but not width) alone was used as the single leaf dimension, the power model developed still predicted with good accuracy the LA but at the expense of some loss of precision, as particularly found for 8% of the leaves sampled with length-to-width ratios below 2.0 or above 3.0.  相似文献   

11.
12.
Photosynthesis of Coffea arabica after chilling   总被引:2,自引:0,他引:2  
Net photosynthetic CO2 exchange of 1-year-old plants of Coffea arabica L. was studied after the above-ground parts had been exposed once or repeatedly to night temperatures in the chilling range. Chill-reduced rates of CO2 uptake (measured at 24°C and at natural CO, level) were observed after a 12 h night exposure to about 6°C. After exposure to 4°C, activity was reduced to less than half of that of the controls, and after exposure to 0.5°C the leaves suffered visible necrotic injury and were no longer able to take up Co2 If the leaves were not lethally injured, net photosynthesis recovered completely within 2 to 6 days. About 25% of chill-induced reduction of CO2 uptake was due to reduced stomatal aperture and 75% to impairment of carboxylation efficiency.
Chilling on successive nights at 4–6°C reduced CO, uptake progressively on each day following treatment. After 10 nights, activity was decreased to less than 10% of initial performance. Conditioning at temperatures slightly above the chilling level (e.g. 15/I2°C) for 2 weeks led to almost complete impairment of photosynthetic activity without additional chilling stress instead of improving chilling tolerance.  相似文献   

13.
Coffee (Coffea arabica L.) is currently grown in many tropical and subtropical areas countries and is a major traded commodity for the developing world. Coffee leaf blight, caused by Phomopsis heveicola, is one of the most important fungal diseases dangerous to coffee crops in China. This study aimed to develop a PCR-based diagnostic method for detecting P. heveicola in planta. Specific primers (CPHF/CPHR) were designed based on sequence data of region of internal transcribed spacer (ITS1 and ITS4) of P. heveicola. The efficiency and specificity of CPHF/CPHR were established by PCR analysis of DNA from P. heveicola strains isolated from China and fungal isolates of other genera. A single amplification product of 318 bp was detected from DNA P. heveicola isolates. No amplification product was observed with any of the other fungal isolates tested. The specific primers designed and employed in PCR detected P. heveicola up to 3 pg from DNA isolated. This is the first report on the development of a species-specific PCR assay for identification and detection of P. heveicola. Thus, the PCR-based assay developed was very specific, rapid and sensitive tool for the detection of pathogen P. heveicola.  相似文献   

14.
15.
16.
The simultaneous analysis of epidemiological and environmental variables could contribute to the determination of the main factors which govern the epidemic dynamics of diseases (i.e. rust, anthracnose and Cercospora leaf spot) in Coffea arabica. With this in mind, the condition of previously marked leaves in 29 plots. which were grouped in 11 different sites in New Caledonia. were surveyed monthly. In the same period, the environmental characteristics of the plots (soil type, climate, etc.)were determined. Statistical analysis of these data revealed significant correlations between pathology and the environment. at the sites’ level (analysis of the mean site values) as well as at the plots' level (analysis of the deviations with the mean site value). The site effects predominated: at those sites in which rust was the major disease, leaf and branch mortality were more pronounced than at sites in which anthracnose or Cercospora leaf spot predominated. Rust was generally associated with soil pH values that were favourable for coffee tree development. with poor soil structure and with large temperature ranges. Within a site. plot exposure to sun and wind could enhance anthracnose and Cercospora leaf spot. Finally, in New Caledonia the three variables soil pH, soil structure and temperature range allow a simple and satisfactory estimation of the epidemiological risks in a given plot.  相似文献   

17.
As microRNAs (miRNAs) are important regulators of many biological processes, a series of small RNAomes from plants have been produced in the last decade. However, miRNA data from several groups of plants are still lacking, including some economically important crops. Here microRNAs from Coffea canephora leaves were profiled and 58 unique sequences belonging to 33 families were found, including two novel microRNAs that have never been described before in plants. Some of the microRNA sequences were also identified in Coffea arabica that, together with C. canephora, correspond to the two major sources of coffee production in the world. The targets of almost all miRNAs were also predicted on coffee expressed sequences. This is the first report of novel miRNAs in the genus Coffea, and also the first in the plant order Gentianales. The data obtained establishes the basis for the understanding of the complex miRNA-target network on those two important crops.  相似文献   

18.
19.
In Coffea arabica (arabica coffee), the phenotypic as well as genetic variability has been found low because of the narrow genetic basis and self fertile nature of the species. Because of high similarity in phenotypic appearance among the majority of arabica collections, selection of parental lines for inter-varietals hybridization and identification of resultant hybrids at an early stage of plant growth is difficult. DNA markers are known to be reliable in identifying closely related cultivars and hybrids. Sequence Related Amplified Polymorphism (SRAP) is a new molecular marker technology developed based on PCR. In this paper, sixty arabica-hybrid progenies belonging to six crosses were analyzed using 31 highly polymorphic SRAP markers. The analysis revealed seven types of SRAP marker profiles which are useful in discriminating the parents and hybrids. The number of bands amplified per primer pair ranges from 6.13 to 8.58 with average number of seven bands. Among six hybrid combinations, percentage of bands shared between hybrids and their parents ranged from 66.29% to 85.71% with polymorphic bands varied from 27.64% to 60.0%. Percentage of hybrid specific fragments obtained in various hybrid combinations ranged from 0.71% to 10.86% and ascribed to the consequence of meiotic recombination. Based on the similarity index calculation, it was observed that F1 hybrids share maximum number of bands with the female parent compared to male parent. The results obtained in the present study revealed the effectiveness of SRAP technique in cultivar identification and hybrid analysis in this coffee species.  相似文献   

20.
Self-sterile Coffea canephora and self-fertile C. arabica are important cash crops in many tropical countries. We examined the relative importance of insect, wind, and spontaneous self-pollination and the degree of self-fertility of these two coffee species in 24 agroforestry coffee fields in Indonesia. In both species, open pollination and cross pollination by hand led to the highest fruit set. Wind pollination (including self-pollination) led to 16% lower fruit set than open pollination in C. canephora and to 12.3% lower fruit set in C. arabica. Self-pollinated flowers and unmanipulated controls achieved an extremely low fruit set of 10% or less in the self-sterile species, and of 60% and 48%, respectively in the self-fertile species. These results constitute experimental evidence that cross pollination by bees causes a significant increase in fruit set of not only the self-sterile, but also the self-fertile coffee species. The practical implication is that coffee yield may be improved by managing fields for increased flower visitation by bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号