共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
《Cell Adhesion & Migration》2013,7(4):631-634
It has long been thought that the same molecules guide both trunk neural crest cells and motor axons as these cell types grow and extend to their target regions in developing embryos. There are common territories that are navigated by these cell types: both cells grow through the rostral portion of the somitic sclerotomes and avoid the caudal half of the sclerotomes. However, these cell types seem to use different molecules to guide them to their target regions. In this review, I will talk about the common and distinct methods of migration taken by trunk neural crest cells and motor axons as they grow and populate their target regions through chick embryos at the level of the trunk. 相似文献
3.
4.
Banerjee S Gordon L Donn TM Berti C Moens CB Burden SJ Granato M 《Development (Cambridge, England)》2011,138(15):3287-3296
Trunk neural crest cells delaminate from the dorsal neural tube as an uninterrupted sheet; however, they convert into segmentally organized streams before migrating through the somitic territory. These neural crest cell streams join the segmental trajectories of pathfinding spinal motor axons, suggesting that interactions between these two cell types might be important for neural crest cell migration. Here, we show that in the zebrafish embryo migration of both neural crest cells and motor axons is temporally synchronized and spatially restricted to the center of the somite, but that motor axons are dispensable for segmental neural crest cell migration. Instead, we find that muscle-specific receptor kinase (MuSK) and its putative ligand Wnt11r are crucial for restricting neural crest cell migration to the center of each somite. Moreover, we find that blocking planar cell polarity (PCP) signaling in somitic muscle cells also results in non-segmental neural crest cell migration. Using an F-actin biosensor we show that in the absence of MuSK neural crest cells fail to retract non-productive leading edges, resulting in non-segmental migration. Finally, we show that MuSK knockout mice display similar neural crest cell migration defects, suggesting a novel, evolutionarily conserved role for MuSK in neural crest migration. We propose that a Wnt11r-MuSK dependent, PCP-like pathway restricts neural crest cells to their segmental path. 相似文献
5.
Disruption of segmental neural crest migration and ephrin expression in delta-1 null mice 总被引:1,自引:0,他引:1
Neural crest cells migrate segmentally through the rostral half of each trunk somite due to inhibitory influences of ephrins and other molecules present in the caudal-half of somites. To examine the potential role of Notch/Delta signaling in establishing the segmental distribution of ephrins, we examined neural crest migration and ephrin expression in Delta-1 mutant mice. Using Sox-10 as a marker, we noted that neural crest cells moved through both rostral and caudal halves of the somites in mutants, consistent with the finding that ephrinB2 levels are significantly reduced in the caudal-half somites. Later, mutant embryos had aberrantly fused and/or reduced dorsal root and sympathetic ganglia, with a marked diminution in peripheral glia. These results show that Delta-1 is essential for proper migration and differentiation of neural crest cells. Interestingly, absence of Delta-1 leads to diminution of both neurons and glia in peripheral ganglia, suggesting a general depletion of the ganglion precursor pool in mutant mice. 相似文献
6.
T Lallier G Leblanc K B Artinger M Bronner-Fraser 《Development (Cambridge, England)》1992,116(3):531-541
We have used a quantitative cell attachment assay to compare the interactions of cranial and trunk neural crest cells with the extracellular matrix (ECM) molecules fibronectin, laminin and collagen types I and IV. Antibodies to the beta 1 subunit of integrin inhibited attachment under all conditions tested, suggesting that integrins mediate neural crest cell interactions with these ECM molecules. The HNK-1 antibody against a surface carbohydrate epitope under certain conditions inhibited both cranial and trunk neural crest cell attachment to laminin, but not to fibronectin. An antiserum to alpha 1 intergrin inhibited attachment of trunk, but not cranial, neural crest cells to laminin and collagen type I, though interactions with fibronectin or collagen type IV were unaffected. The surface properties of trunk and cranial neural crest cells differed in several ways. First, trunk neural crest cells attached to collagen types I and IV, but cranial neural crest cells did not. Second, their divalent cation requirements for attachment to ECM molecules differed. For fibronectin substrata, trunk neural crest cells required divalent cations for attachment, whereas cranial neural crest cells bound in the absence of divalent cations. However, cranial neural crest cells lost this cation-independent attachment after a few days of culture. For laminin substrata, trunk cells used two integrins, one divalent cation-dependent and the other divalent cation-independent (Lallier, T. E. and Bronner-Fraser, M. (1991) Development 113, 1069-1081). In contrast, cranial neural crest cells attached to laminin using a single, divalent cation-dependent receptor system. Immunoprecipitations and immunoblots of surface labelled neural crest cells with HNK-1, alpha 1 integrin and beta 1 integrin antibodies suggest that cranial and trunk neural crest cells possess biochemically distinct integrins. Our results demonstrate that cranial and trunk cells differ in their mechanisms of adhesion to selected ECM components, suggesting that they are non-overlapping populations of cells with regard to their adhesive properties. 相似文献
7.
8.
Epithelial-to-mesenchymal transition (EMT) is a dynamic process that produces migratory cells from epithelial precursors. However, EMT is not binary; rather it results in migratory cells which adopt diverse strategies including collective and individual cell migration to arrive at target destinations. Of the many embryonic cells that undergo EMT, the vertebrate neural crest is a particularly good example which has provided valuable insight into these processes. Neural crest cells from different species often adopt different migratory strategies with collective migration predominating in anamniotes, whereas individual cell migration is more prevalent in amniotes. Here, we will provide a perspective on recent work toward understanding the process of neural crest EMT focusing on how these cells undergo collective and individual cell migration. 相似文献
9.
J1/tenascin-related molecules are not responsible for the segmented pattern of neural crest cells or motor axons in the chick embryo 总被引:5,自引:0,他引:5
C D Stern W E Norris M Bronner-Fraser G J Carlson A Faissner R J Keynes M Schachner 《Development (Cambridge, England)》1989,107(2):309-319
It has been suggested that substrate adhesion molecules of the tenascin family may be responsible for the segmented outgrowth of motor axons and neural crest cells during formation of the peripheral nervous system. We have used two monoclonal antibodies (M1B4 and 578) and an antiserum [KAF9(1)] to study the expression of J1/tenascin-related molecules within the somites of the chick embryo. Neural crest cells were identified with monoclonal antibodies HNK-1 and 20B4. Young somites are surrounded by J1/tenascin immunoreactive material, while old sclerotomes are immunoreactive predominantly in their rostral halves, as described by other authors (Tan et al. 1987--Proc. natn. Acad. Sci. U.S.A. 84, 7977; Mackie et al. 1988--Development 102, 237). At intermediate stages of development, however, immunoreactivity is found mainly in the caudal half of each sclerotome. After ablation of the neural crest, the pattern of immunoreactivity is no longer localised to the rostral halves of the older, neural-crest-free sclerotomes. SDS-polyacrylamide gel electrophoresis of affinity-purified somite tissue, extracted using M1B4 antibody, shows a characteristic set of bands, including one of about 230 x 10(3), as described for cytotactin, J1-200/220 and the monomeric form of tenascin. Affinity-purified somite material obtained from neural-crest-ablated somites reveals some of the bands seen in older control embryos, but the high molecular weight components (120-230 x 10(3] are missing. Young epithelial somites also lack the higher molecular mass components. The neural crest may therefore participate in the expression of J1/tenascin-related molecules in the chick embryo. These results suggest that these molecules are not directly responsible for the segmented outgrowth of precursors of the peripheral nervous system. 相似文献
10.
Catherine E Krull 《Cell Adhesion & Migration》2010,4(4):631-634
It has long been thought that the same molecules guide both trunk neural crest cells and motor axons as these cell types grow and extend to their target regions in developing embryos. There are common territories that are navigated by these cell types: both cells grow through the rostral portion of the somitic sclerotomes and avoid the caudal half of the sclerotomes. However, these cell types seem to use different molecules to guide them to their target regions. In this Review, I will discuss the common and distinct methods of migration taken by trunk neural crest cells and motor axons as they grow and populate their target regions through chick embryos at the level of the trunk.Key words: migration, axon, motor neuron, trunk neural crest cells, chick 相似文献
11.
Glenn C. Rosenquist 《Developmental biology》1981,87(2):201-211
Chick embryos carrying transplants labeled with tritiated thymidine demonstrate that the neural crest originates in the anterior epiblast, at the junction of areas destined for epidermis and neural tube. As the neural tube begins to fold and the axis lengthens, cells along this junction are drawn dorsomedially; at the seven-somite stage they begin to separate from the epithelium of the head, and migrate into the angle between the epidermis and the neural tube. The paraxial mesoderm already populating this angle originates in more posterior and medial portions of the epiblast than do the neural crest cells; after invagination at the primitive streak, it migrates anterolaterally, ventral to the ectoderm layer, until it too is folded dorsomedially into the angle between the epidermis and the neural tube. 相似文献
12.
Summary To investigate the control of the timing in the epithelio-mesenchymal transformation of the neural crest into a migrating population, neural anlagen (neural tube plus crest) were isolated from 2-day quail embryos by proteases in the presence of Ca+ + and explanted onto substrates favourable for neural crest cell migration. Explants isolated before normal migration had commenced required 3–8 h in vitro before neural crest cells started migration, but explants obtained at migratory stages showed an immediate onset of migration. The schedule was similar to that expected in vivo. When pre-migratory neural anlagen were isolated by protease in Ca+ +- and Mg+ +-free (CMF) medium, or when the protease was followed by a brief (5 min) exposure to CMF medium, neural crest cell migration commenced without delay, and the cohesion of the anlagen was impaired. Ca+ +-free medium duplicated the effects of CMF, but neither Mg+ +-free medium nor CMF treatment before treatment with protease stimulated migration and reduced cohesion. Precocious neural crest cell migration and reduced cohesion also followed when neural anlagen of pre-migratory stages were cultured with membrane. Ca+ +-channel antagonists D600 and Nifedipine, without any exernal Ca+ +-depletion.The decrease of cohesion of these tissues is consistent with results in other systems where protease/Ca+ +-depletion inactivates Ca+ +-dependent cell-cell adhesive mechanisms. Therefore, we suggest that Ca+ +-dependent cell-cell adhesions play a part in preventing neural crest cells from migrating precociously and that the timed inactivation of this adhesion system normally helps trigger the onset of migration. The results with blockers of Ca+ +-channels suggest that Ca+ + levels may be involved in regulating this system. 相似文献
13.
David G. Wilkinson 《BioEssays : news and reviews in molecular, cellular and developmental biology》1993,15(8):499-505
Recent work has shown that segmentation underlies the patterning of the vertebrate hindbrain and its neural crest derivatives. Several genes have been identified with segment-restricted expression, and evidence is now emerging regarding their function and regulatory relationships. The expression patterns of Hox genes and the phenotype of null mutants indicate roles in specifying segment identity. A zinc finger gene Krox-20 is a segment-specific regulator of Hox expression, and it seems probable that retinoic acid receptors also regulate Hox genes in the hindbrain. The receptor tyrosine kinase gene Sek may mediate cell-cell interactions that lead to segmentation. These studies provide a starting point for understanding the molecular basis of segmental patterning in the hindbrain. 相似文献
14.
Brian K. Hall 《Journal of biosciences》2008,33(5):781-793
The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary
developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal
ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or
limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give
rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell
contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which
other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest
as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper
I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss
how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on
the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural
crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells. 相似文献
15.
Adhesion to extracellular materials by neural crest cells at the stage of initial migration 总被引:1,自引:0,他引:1
Dr. Donald F. Newgreen 《Cell and tissue research》1982,227(2):297-317
Summary Trunk-level neural anlagen bearing neural crest cells at the stage of initiation of migration were isolated from chick embryos and explanted in serum-free medium onto glass substrates which had previously been treated with extracellular materials. After 0.5–2 h incubation, the expiants were dislodged with a stream of culture medium and the substrate examined for adherent crest cells. Crest cells adhered to collagen gels, and adhered to and spread on adsorbed fibronectin; antiserum to fibronectin prevented adhesion to fibronectin but not to collagen gels. Air-dried collagen gels and collagen solutions were less adhesive, the adhesivity declining with longer drying time and lower collagen concentration. Crest cells adhered poorly to dried gelatin and not at all to adsorbed collagen. Fibronectin increased the adhesion to dried collagen and gelatin. Pretreatment of collagen gels with hyaluronate retarded adhesion. Hyaluronate pretreatment also retarded adhesion to adsorbed fibronectin but only when adsorbed collagen was also present. Pretreatment of collagen gels with the proteoglycan monomer from bovine nasal cartilage had no effect of the adhesion of crest cells, but the proteoglycan almost completely inhibited adhesion to adsorbed fibronectin, but only when absorbed collagen was also present. The results are discussed in terms of the control of migration of neural crest cells by extracellular materials. 相似文献
16.
Retinoic acid inhibits migration of cranial neural crest cells in the cultured mouse embryo 总被引:2,自引:0,他引:2
R M Pratt E H Goulding B D Abbott 《Journal of craniofacial genetics and developmental biology》1987,7(3):205-217
Clinical observations have demonstrated that isotretinoin (13-cis-retinoic acid; cis-RA) is a human teratogen causing primarily heart and craniofacial malformations. Isotretinoin exposure to the early postimplantation mouse embryo in culture results in specific defects in craniofacial development that may be due to an interference in the early migration of cranial neural crest (CNC) cells [Goulding and Pratt, 1986]. The present study was designed to test this hypothesis by examining the migration of these cells in whole embryo culture. Day 8 CD-1 mouse embryos were cultured for 6-48 hr in the presence or absence of cis-RA at 2 X 10(-6) to 2 X 10(-5) M. Embryos either were fixed for light microscopy using Nichols' method for localization of CNC cells or were processed for scanning and transmission electron microscopy. At the light microscopic level, CNC cells in the mid-brain region of control embryos had migrated to the region of the first and second visceral arches after 6 hr in culture. Cis-RA interfered with this migration; CNC cells in treated embryos either did not leave the neuroepithelium (NE) or were aggregated near the NE. Autoradiographic studies indicated that cis-RA did not affect the overall viability or DNA synthesis of the CNC cells. However, at the TEM level, there was a dramatic increase in the number of cellular blebs in the CNC cells. Our results demonstrate a direct effect of 13-cis-RA on the CNC cells and suggest that this effect is due to alterations in the cell surface. 相似文献
17.
Tissue interactions affecting the migration and differentiation of neural crest cells in the chick embryo. 总被引:2,自引:0,他引:2
A series of microsurgical operations was performed in chick embryos to study the factors that control the polarity, position and differentiation of the sympathetic and dorsal root ganglion cells developing from the neural crest. The neural tube, with or without the notochord, was rotated by 180 degrees dorsoventrally to cause the neural crest cells to emerge ventrally. In some embryos, the notochord was ablated, and in others a second notochord was implanted. Sympathetic differentiation was assessed by catecholamine fluorescence after aldehyde fixation. Neural crest cells emerging from an inverted neural tube migrate in a ventral-to-dorsal direction through the sclerotome, where they become segmented by being restricted to the rostral half of each sclerotome. Both motor axons and neural crest cells avoid the notochord and the extracellular matrix that surrounds it, but motor axons appear also to be attracted to the notochord until they reach its immediate vicinity. The dorsal root ganglia always form adjacent to the neural tube and their dorsoventral orientation follows the direction of migration of the neural crest cells. Differentiation of catecholaminergic cells only occurs near the aorta/mesonephros and in addition requires the proximity of either the ventral neural tube (floor plate/ventral root region) or the notochord. Prior migration of presumptive catecholaminergic cells through the sclerotome, however, is neither required nor sufficient for their adrenergic differentiation. 相似文献
18.
Temporally distinct requirements for endothelin receptor B in the generation and migration of gut neural crest stem cells 总被引:19,自引:0,他引:19
Loss of Endothelin-3/Endothelin receptor B (EDNRB) signaling leads to aganglionosis of the distal gut (Hirschsprung's disease), but it is unclear whether it is required primarily for neural crest progenitor maintenance or migration. Ednrb-deficient gut neural crest stem cells (NCSCs) were reduced to 40% of wild-type levels by embryonic day 12.5 (E12.5), but no further depletion of NCSCs was subsequently observed. Undifferentiated NCSCs persisted in the proximal guts of Ednrb-deficient rats throughout fetal and postnatal development but exhibited migration defects after E12.5 that prevented distal gut colonization. EDNRB signaling may be required to modulate the response of neural crest progenitors to migratory cues, such as glial cell line-derived neurotrophic factor (GDNF). This migratory defect could be bypassed by transplanting wild-type NCSCs directly into the aganglionic region of the Ednrb(sl/sl) gut, where they engrafted and formed neurons as efficiently as in the wild-type gut. 相似文献
19.
20.
Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. 总被引:18,自引:0,他引:18
A vital dye analysis of cranial neural crest migration in the chick embryo has provided a positional fate map of greater resolution than has been possible using labelled graft techniques. Focal injections of the fluorescent membrane probe DiI were made into the cranial neural folds at stages between 3 and 16 somites. Groups of neuroepithelial cells, including the premigratory neural crest, were labelled by the vital dye. Analysis of whole-mount embryos after 1-2 days further development, using conventional and intensified video fluorescence microscopy, revealed the pathways of crest cells migrating from mesencephalic and rhombencephalic levels of the neuraxis into the subjacent branchial region. The patterns of crest emergence and emigration correlate with the segmented disposition of the rhombencephalon. Branchial arches 1, 2 and 3 are filled by crest cells migrating from rhombomeres 2, 4 and 6 respectively, in register with the cranial nerve entry/exit points in these segments. The three streams of ventrally migrating cells are separated by alternating regions, rhombomeres 3 and 5, which release no crest cells. Rostrally, rhombomere 1 and the caudal mesencephalon also contribute crest to the first arch, primarily to its upper (maxillary) component. Both r3 and r5 are associated with enhanced levels of cell death amongst cells of the dorsal midline, suggesting that crest may form at these levels but is then eliminated. Organisation of the branchial region is thus related by the dynamic process of neural crest immigration to the intrinsic mechanisms that segment the neuraxis. 相似文献