首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Osteopontin is a secreted glycoprotein expressed by many cell types including osteoblasts and lymphocytes; it is a constituent of the extracellular matrix (ECM) in bone, and a mitogen for lymphocytes. To investigate the role of osteopontin in muscle repair and development, expression of osteopontin by muscle cells in vivo and in vitro, and the effects of osteopontin on myoblast function in vitro were investigated. Osteopontin staining was weak in sections of muscle from normal mice, but associated with desmin-positive cells in areas of regeneration in muscles from mdx mice. In immunocytochemical, PCR and ELISA studies, cultured myoblasts were found to express osteopontin and secrete it into medium. Treatment of myoblast cultures with fibroblast growth factor-2, transforming growth factor beta1, interleukin-1beta or thrombin significantly increased osteopontin expression. Osteopontin-coated substrata promoted adhesion and fusion, but not proliferation or migration, of myoblasts. The effect of osteopontin on myoblast adhesion was RGD-dependent. In solution, osteopontin significantly increased proliferation and decreased fusion and migration of myoblasts. These results suggest that myoblasts are an important source of osteopontin in damaged muscle and that osteopontin released by myoblasts may assist in controlling both the myogenic and inflammatory processes during the early stages of muscle regeneration.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Osteopontin protects endothelial cells from apoptosis induced by growth factor withdrawal. This interaction is mediated by the alpha(v)beta(3) integrin and is NF-kappaB-dependent (Scatena, M., Almeida, M., Chaisson, M. L., Fausto, N., Nicosia, R. F., and Giachelli, C. M. (1998) J. Cell Biol. 141, 1083-1093). In the present study we used differential cloning to identify osteopontin-induced, NF-kappaB-dependent genes in endothelial cells. One of the genes identified in this screen was osteoprotegerin, a member of the tumor necrosis factor receptor superfamily. By Northern and Western blot analysis, osteoprotegerin mRNA and protein levels were very low in endothelial cells plated on the non-integrin cell attachment factor, poly-d-lysine. In contrast, osteoprotegerin mRNA and protein levels were induced 5-7-fold following alpha(v)beta(3) ligation by osteopontin. Osteoprotegerin induction by osteopontin was time-dependent and observed as early as 3 h following treatment. NF-kappaB inactivation achieved by over expression of an IkappaB super repressor in endothelial cells completely inhibited osteoprotegerin induction by osteopontin. Finally, purified osteoprotegerin protected endothelial cells with inactive NF-kappaB from apoptosis induced by growth factor deprivation. These data suggest that alpha(v)beta(3)-mediated endothelial survival depends on osteoprotegerin induction by NF-kappaB and indicate a new function for osteoprotegerin in endothelial cells.  相似文献   

10.
11.
12.
This study shows that cultured human articular chondrocytes express high levels of 1.4 kb prepro-enkephalin mRNA. Chondrocytes store met-enkephalin intracellularly and secrete this neuropeptide in mature as well as in precursor form. Gene expression is inducible by serum factors. High levels of prepro-enkephalin mRNA are detected in proliferating chondrocytes but not in confluent, contact-inhibited cells. Phorbol myristate acetate and dibutyryl cyclic AMP, but not dexamethasone, increase levels of prepro-enkephalin mRNA. Furthermore, transforming growth factor beta (TGF beta) and platelet derived growth factor (PDGF) upregulate gene expression, whereas retinoic acid, which inhibits chondrocyte proliferation, suppresses both basal and induced gene expression. Using in situ hybridization it is shown that only 1-3% of primary chondrocytes express prepro-enkephalin mRNA, whereas 52 +/- 12% of subcultured cells are strongly positive. Analysis of DNA synthesis, by autoradiography of incorporated [3H]thymidine, shows that these numbers correspond to the percentage of cells in S-phase of the cell cycle. In cultures of primary chondrocytes TGF beta promotes the formation of cartilage nodules and stimulates proliferation of adherent cells. This is associated with high levels of prepro-enkephalin mRNA in proliferating cells but not in contact-inhibited cells in cartilage nodules. In contrast, formation of cartilage nodules, proliferation and the expression of enkephalin are suppressed by interleukin-1 beta. In summary, expression of prepro-enkephalin in human articular chondrocytes is differentially controlled by cartilage regulatory factors and closely associated with cell proliferation.  相似文献   

13.
14.
15.
16.
A transcriptional network in polycystic kidney disease   总被引:11,自引:0,他引:11  
  相似文献   

17.
18.
19.
Based on previous studies demonstrating activation of phosphatidylinositol 3-hydroxyl kinase (PI3-kinase) and stimulation of a change in cell shape, we examined the effect of osteopontin on the association of phospholipids with gelsolin, an actin-capping/severing protein. Osteopontin stimulated a rapid increase in phosphatidylinositol bisphosphate and phosphatidylinositol triphosphate levels associated with gelsolin in Triton-soluble fractions of cell lysates. The increased levels of phosphatidylinositol triphosphate associated with gelsolin were due to stimulation of PI3-kinase activity associated with gelsolin in the Triton-soluble fractions, and they were blocked by the PI3-kinase inhibitor wortmannin. Osteopontin stimulated translocation of PI3-kinase from the Triton-insoluble to Triton-soluble gelsolin. Osteopontin also decreased Triton-soluble gelsolin/actin complexes consistent with actin uncapping, and increased F-actin levels, which were also blocked by wortmannin. The osteopontin effects were mediated through binding to the alpha(v)beta 3 integrin. Taken together, our studies indicate that osteopontin/alpha(v)beta 3-mediated changes in gelsolin-associated phosphoinositide levels and PI3-kinase activity are related to stimulation of F-actin formation in osteoclasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号