首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Among Moloney murine leukemia viruses (Mo-MuLVs) having stop codons other than UAG at the gag-pol junction, Mo-MuLV with UAA, but not with UGA, had a replication disadvantage. Mo-MuLV with a glutamine codon (CAG) at the junction did not replicate. A revertant of this virus consisted of the original virus and a virus with a deletion of the pol region. Protease and Pr65gag encoded by their respective genomes complemented each other.  相似文献   

2.
3.
M J Roth 《Journal of virology》1991,65(4):2141-2145
The integration protein (IN) is required for retrovirus DNA integration into the host DNA. The function of the C terminus of the Moloney murine leukemia virus IN protein was examined. The terminal 28 amino acids were found to be nonessential. A linker insertion at position 6025, within a 36-amino-acid insertion not found in any other retrovirus, also produced viable virus.  相似文献   

4.
5.
A mutant of Moloney murine leukemia virus was generated in which the UAG termination codon at the 3' end of the gag gene was changed to a CAG codon encoding glutamine. Cells carrying the mutant provirus constitutively express the gag-pol fusion protein and no detectable gag protein. The precursor is stable, is not processed by the protease domain within the precursor, and does not induce assembly and release of virion particles.  相似文献   

6.
7.
Normal replication of Moloney murine leukemia virus (MoMLV) requires the integration of a DNA copy of the viral RNA genome into a chromosome of the host. In this work, we characterize the DNA sequences at the ends of the linear proviral precursor that are required for integration in the presence of MoMLV integration protein in vitro. We found that nine bases of MoMLV DNA at each end of a linear model substrate were sufficient for near-maximal levels of integration and that four bases of MoMLV DNA at each end were sufficient for low levels of correct integration. We also found that a 3'-terminal A residue was preferred for integration. We infer from the limited DNA sequence requirements for integration that factors in addition to DNA sequence direct integration protein to act at the ends of the viral DNA.  相似文献   

8.
By carrying out oligonucleotide-directed mutagenesis, in vitro, on a 3.3 kb XhoI-HindIII fragment from Moloney murine leukaemia virus Mo-MuLV proviral DNA, inserted into the phagemid pTZ19R, nine separate fragments have been prepared in which mutations have been inserted at and around the gag-pol gene junction. Using these mutant fragments Mo-MuLV proviral DNA has been reassembled and cloned into pBR322. Examination of the mutant proviral DNAs in mouse culture cells indicates that a terminator codon at the gag-pol junction is essential for function, but any of the three chain terminator codons gives an active virus. Also the region of secondary structure surrounding the terminator codon must be preserved.  相似文献   

9.
The cytoplasmic tail of the immature Moloney murine leukemia virus (MoMuLV) envelope protein is approximately 32 amino acids long. During viral maturation, the viral protease cleaves this tail to release a 16-amino-acid R peptide, thereby rendering the envelope protein fusion competent. A series of truncations, deletions, and amino acid substitutions were constructed in this cytoplasmic tail to examine its role in fusion and viral transduction. Sequential truncation of the cytoplasmic tail revealed that removal of as few as 11 amino acids resulted in significant fusion when the envelope protein was expressed in NIH 3T3 cells, similar to that seen following expression of an R-less envelope (truncation of 16 amino acids). Further truncation of the cytoplasmic tail beyond the R-peptide cleavage site toward the membrane-spanning region had no additional effect on the level of fusion observed. In contrast, some deletions and nonconservative amino acid substitutions in the membrane-proximal region of the cytoplasmic tail (residues L602 to F605) reduced the amount of fusion observed in XC cell cocultivation assays, suggesting that this region influences the fusogenicity of full-length envelope protein. Expression of the mutant envelope proteins in a retroviral vector system revealed that decreased envelope-mediated cell-cell fusion correlated with a decrease in infectivity of the resulting virions. Additionally, some mutant envelope proteins which were capable of mediating cell-cell fusion were not efficiently incorporated into retroviral particles, resulting in defective virions. The cytoplasmic tail of MoMuLV envelope protein therefore influences both the fusogenicity of the envelope protein and its incorporation into virions.  相似文献   

10.
Precursor polyproteins containing translational products of the gag gene of Moloney murine leukemia virus were purified by gel electrophoresis and cleaved into large fragments by hydroxylamine, mild acid hydrolysis, or cyanogen bromide. The hydroxylamine cleavage method (specific for asparagine-glycine bonds) was adapted especially for this study. The electrophoretic mobility and antigenicity of the fragments and, in some cases, the presence or absence of [35S]methionine revealed detailed information on the structure of Pr65gag, gPr80gag, and Pr75gag (the unglycosylated variant of gPr80gag formed in vivo in the presence of tunicamycin or in vitro in a reticulocyte cell-free system). When compared with Pr65gag, gPr80gag contains 7,000 daltons of additional amino acids, presumably as, or as part of, a leader sequence at or very close to its N terminus. We present evidence that this leader may have replaced part of the p15 sequence. Furthermore, gPr80gag contains three separate carbohydrate groups. One is attached to the presumed leader sequence or to the p15 domain, and two are attached to the p30 domain. Each of the Moloney murine leukemia virus gag precursor proteins Pr65gag, gPr80gag, and Pr75gag corresponds with a read-through product into the pol gene. We designated these products Pr180gag-pol, gPr200gag-pol, and Pr190gag-pol (the unglycosylated variant of gPr200gag-pol), respectively. gPr200gag-pol contains all of the extra amino acids and carbohydrate groups present in gPr80gag and at least one carbohydrate group in its pol sequences.  相似文献   

11.
The roles played by the N-linked glycans of the Friend murine leukemia virus envelope proteins were investigated by site-specific mutagenesis. The surface protein gp70 has eight potential attachment sites for N-linked glycan; each signal asparagine was converted to aspartate, and mutant viruses were tested for the ability to grow in NIH 3T3 fibroblasts. Seven of the mutations did not affect virus infectivity, whereas mutation of the fourth glycosylation signal from the amino terminus (gs4) resulted in a noninfectious phenotype. Characterization of mutant gene products by radioimmunoprecipitation confirmed that glycosylation occurs at all eight consensus signals in gp70 and that gs2 carries an endoglycosidase H-sensitive glycan. Elimination of gs2 did not cause retention of an endoglycosidase H-sensitive glycan at a different site, demonstrating that this structure does not play an essential role in envelope protein function. The gs3- mutation affected a second posttranslational modification of unknown type, which was manifested as production of gp70 that remained smaller than wild-type gp70 after removal of all N-linked glycans by peptide N-glycosidase F. The gs4- mutation decreased processing of gPr80 to gPr90, completely inhibited proteolytic processing of gPr90 to gp70 and Pr15(E), and prevented incorporation of envelope products into virus particles. Brefeldin A-induced mixing of the endoplasmic reticulum and parts of the Golgi apparatus allowed proteolytic processing of wild-type gPr90 to occur in the absence of protein transport, but it did not overcome the cleavage defect of the gs4- precursor, indicating that gs4- gPr90 is resistant to the processing protease. The work reported here demonstrates that the gs4 region is important for env precursor processing and suggests that gs4 may be a critical target in the disruption of murine leukemia virus env product processing by inhibitors of N-linked glycosylation.  相似文献   

12.
Genetic studies have indicated that integration of retroviral DNA into the host genome depends on the presence of the inverted repeats at the free termini of the long terminal repeats on the unintegrated DNA and on the product of the 3' end of the pol gene (the integrase [IN] protein). While the precise function of the Moloney murine leukemia virus IN protein is uncertain, others have shown that it is a DNA-binding protein and functions in the processing of the inverted repeats prior to integration. By using site-directed mutagenesis, we cloned and expressed the IN protein in Escherichia coli. Crude extracts of total cellular protein were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose filters, denatured in guanidine, renatured, and incubated with oligonucleotide probes. Single- and double-stranded oligonucleotides corresponding to the termini of unintegrated linear viral DNA were specifically bound by the IN protein in this assay. These data suggest that the role of the Moloney IN protein in the early steps of integration involves sequence-specific recognition of the DNA sequences found at the ends of the long terminal repeats.  相似文献   

13.
The envelope protein of Moloney murine leukemia virus (Mo-MLV) is a complex glycoprotein that mediates receptor binding and entry via fusion with cell membranes. By using a series of substitution mutations and truncations in the Mo-MLV external envelope surface protein gp70, we have identified regions important for these processes. Firstly, truncations of gp70 revealed that the minimal continuous receptor-binding region is amino acids 9 to 230, in broad agreement with other studies. Secondly, within this region there are two key basic amino acids, Arg-83 and Arg-95, that are essential for receptor binding and may interact with a negatively charged residue(s) or with the pi electrons of the aromatic ring on a hydrophobic residue(s) in the basic amino acid transporter protein that is the Mo-MLV ecotropic receptor. Finally, we showed that outside the minimal receptor-binding region at amino acids 2 to 8, there is a region that is essential for postbinding fusion events.  相似文献   

14.
The matrix protein (MA) of the Moloney murine leukemia virus (M-MuLV) was found to interact with IQGAP1, a prominent regulator of the cytoskeleton. Mutational studies defined residues of MA critical for the interaction, and tests of viruses carrying MA mutations revealed a near-perfect correlation between binding and virus replication. The replication-defective mutants showed defects in both early and late stages of the life cycle. Four viable second-site revertant viruses were isolated from three different replication-defective parental mutants, and in all cases the interaction with IQGAP1 was restored by the suppressor mutations. The interaction of MA and IQGAP1 was readily detected in vitro and in vivo. Virus replication was potently inhibited by a C-terminal fragment of IQGAP1, and impaired by RNAi knockdown of IQGAP1 and 2. We suggest that the IQGAPs link the virus to the cytoskeleton for trafficking both into and out of the cell.  相似文献   

15.
The Moloney murine sarcoma-leukemia virus [M-MSV (MuLV)], propagated at high multiplicity of infection (MOI), was demonstrated previously to contain a native genome mass of 4 X 10(6) daltons as contrasted to a mass of 7 X 10(6) daltons for Moloney murine leukemia virus (M-MuLV). The 4 X 10(6)-dalton classof RNA from M-MSV (MuLV) was examined for base sequence homology with DNA complementary to the 7 X 10(6)-dalton M-MuLV RNA genome. Approximately 86% of the M-MSV (MuLV) was protected from RNase digestion by hybridization, whereas 95% of M-MuLV was protected under identical conditions. These results indicate that the small RNA class of high-MOI M-MSV (MuLV) contains little (perhaps 10%) genetic information not present in M-MuLV. Virtually all of the 1.8 X 10(6)-dalton subunits of M-MSV (MuLV) RNA contained regions of poly(A) since 94% of the RNA bound to oligo(dT) cellulose in 0.5 M KCl. This suggests that the formation of the 1.8 X 10(6)-dalton subunits occurs before their packaging into virions and does not result from hydrolysis of intact 3.5 X 10(6)-dalton subunits by a virion-associated nuclease.  相似文献   

16.
17.
Murine leukemia virus (MLV) produces the unspliced RNA and the singly spliced RNA at a proper ratio at a time. To identify cis-elements involved in the production of the unspliced RNA, we examined the level of unspliced RNA in a series of mutants derived from a prototype Moloney MLV mutant gag-encoding G3.6. Our present data indicated that nt 1560-1906 region in the CA-encoding region in gag was the negative cis-element and nt 5119-5355 region, which was immediately upstream of the splice acceptor site, was the positive cis-element for expression of the unspliced RNA. It was found that the former element made expression of the unspliced RNA dependent upon the latter. These two elements were functional as discrete elements and their activities were relatively position-independent.  相似文献   

18.
19.
The nucleotide sequence of the gag gene of feline leukemia virus and its flanking sequences were determined and compared with the corresponding sequences of two strains of feline sarcoma virus and with that of the Moloney strain of murine leukemia virus. A high degree of nucleotide sequence homology between the feline leukemia virus and murine leukemia virus gag genes was observed, suggesting that retroviruses of domestic cats and laboratory mice have a common, proximal evolutionary progenitor. The predicted structure of the complete feline leukemia virus gag gene precursor suggests that the translation of nonglycosylated and glycosylated gag gene polypeptides is initiated at two different AUG codons. These initiator codons fall in the same reading frame and are separated by a 222-base-pair segment which encodes an amino terminal signal peptide. The nucleotide sequence predicts the order of amino acids in each of the individual gag-coded proteins (p15, p12, p30, p10), all of which derive from the gag gene precursor. Stable stem-and-loop secondary structures are proposed for two regions of viral RNA. The first falls within sequences at the 5' end of the viral genome, together with adjacent palindromic sequences which may play a role in dimer linkage of RNA subunits. The second includes coding sequences at the gag-pol junction and is proposed to be involved in translation of the pol gene product. Sequence analysis of the latter region shows that the gag and pol genes are translated in different reading frames. Classical consensus splice donor and acceptor sequences could not be localized to regions which would permit synthesis of the expected gag-pol precursor protein. Alternatively, we suggest that the pol gene product (RNA-dependent DNA polymerase) could be translated by a frameshift suppressing mechanism which could involve cleavage modification of stems and loops in a manner similar to that observed in tRNA processing.  相似文献   

20.
Genetic studies of the ploidy of Moloney murine leukemia virus.   总被引:7,自引:6,他引:1       下载免费PDF全文
An assay for Moloney murine leukemia virus was developed that made use of the production of morphologically altered foci in nonproducer mouse cells (15F) carrying murine sarcoma virus. Wild-type (wt) virus gave a ratio of titers at 39 degrees C/34degrees C = 1.05 +/- 0.45 (standard deviation;n = 20). A spontaneous, thermosensitive (ts) mutant of Moloney murine leukemia virus, ts3, defective in a late viral function, gave 39 degrees C/34degrees C = 0. A murine cell line (TB) was mixedly infected with ts3 and wt (multiplicities of infection, 7.8:4.3), cloned after infection, and shown to be infected by both viruses. At 34 degrees C it produced wt, ts, and particles of mixed parentage. The heterozygotes (hz) had ratios of assays 39 degrees C/34 degrees C = 0.06 to 0.84 (mean, 0.36). To eliminate possible interference by multiploid particles with determination of the proportions of the three types of particles, the virus produced by the mixedly infected, cloned cell line at 34 degrees C was distributed by velocity sedimentation in a sucrose gradient, and virus was picked from the lightest part of the gradient. The proportions of ts, wt, and hz were 0.27, 0.26, and 0.47. Those particles identified as hz segreated ts, wt, and hz in the proportions 0.24, 0.27, and 0.49, respectively. These values were not significantly different from those predicted from a diploid model of the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号