共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous solutions of dextran and of poly(ethylene glycol) when mixed give rise to two-phase systems useful in separating cells, on the basis of their surface properties, by partitioning. Depending on whether salts with unequal or equal affinity for the two phases are chosen, phases with or without an electrostatic potential difference between the phases are obtained. At appropriate polymer concentrations the former yield cell partition coefficients (i.e., the quantity of cells in the top phase as a percentage of total cells added) based on charge-associated surface properties while the latter reflect membrane lipid-related parameters. With increasing cell age, rat erythrocytes have diminishing partition coefficients in both charged and uncharged phases. Using the elevated aspartate aminotransferase levels of younger red cells as a marker, we have now found that young mature erythrocytes of human do not have the highest partition coefficient in the red cell population as they do in rat. Experiments with isotopically labeled dog red cells yield results similar to those found with human erythrocytes. Furthermore, density-separated young and old red cells from human give overlapping countercurrent distribution curves. Finally, counter-current distribution of human red blood cells followed by pooling of cells from the left and right ends of the distribution and subjection of these cells to a redistribution gives curves that overlap with each other and with the original countercurrent distribution. This indicates that not only are human red cells not subfractionated based on possible age-related surface alterations, but also that they are not subfractionated by partitioning based on any surface parameter.These results are consistent with our previous findings that membrane sialic acid/hemoglobin absorbance is essentially constant through the extraction train after countercurrent distribution of human erythrocytes in a charged phase system; and with the recent reports of others that there is no difference in electrophoretic mobility between human young and old red cells. 相似文献
2.
The effect of the tie-line location (phase volume ratio) on the kinetics of phase separation in batch PEG/salt aqueous two-phase systems (ATPS) has been investigated. PEG/sulphate systems with a stability ratio (sr) of 0.34 and 0.37 and relative tie-line lengths in the range 0.1 to 0.6 for a continuous top phase and in the range 0.03 to 0.15 for a continuous bottom phase were used in the batch studies. A continuous settler was designed with three different inlet geometries. Phase separation is much faster when the bottom phase is continuous and in this case the location on the tie-line and the presence or absence of Bacillus subtilis extract makes little difference. When the top phase is continuous the relative sizes of the phases (phase ratio, R, relative distance on tie-line, rd) has an important effect, the larger the top phase (larger R and rd) the slower the phase separation. The presence of Bacillus extract also makes the operation slower which is more marked at the largest values of R (and rd). At the largest volume ratios ( R or rd) three different settling regions have been recognised, a region of coalescence, a region of drops moving to the interphase and a region where drops queue at the interphase to coalesce into the large phase. A modified correlation that takes into account the location on the tie-line and thus volume ratio ( R) and relative distance (rd) has been proposed and successfully tested. The behavior of batch and continuous systems in the presence and absence of Bacillus subtilis extract in systems with continuous bottom phase was also studied. The settling velocity was lower in the continuous than in the batch systems, and in both cases the initial rate was lower in the presence of Bacillus extract. 相似文献
3.
The partitioning behavior of several Group 1 and 2 cations was investigated in poly(ethylene glycol) (PEG)-based aqueous biphasic systems. All of these metal ions prefer the salt-rich phase over the PEG-rich phase with distribution ratios all well below one regardless of the system investigated. The relative salting-out ability of the individual cations can be directly correlated to their Gibbs free energy of hydration (Δ Ghyd). In addition, the relative magnitude of the distribution ratios for these metal ions can also be explained in terms of Δ Ghyd. 相似文献
4.
The dynamic viscosities of dilute aqueous poly(ethylene glycol) and dextran, and poly(ethylene glycol)-dextran-water solutions have been measured. The poly(ethylene glycol) and dextran samples had average molecular masses of 8000 Da and 580 000 Da, respectively. To estimate the values of viscosity of poly(ethylene glycol)-dextran-water solutions, a Grunberg like equation has been proposed which takes into account the influence of poly(ethylene glycol) and dextran concentrations. The relative errors vary between 0.76 and 11.64 in absolute value. 相似文献
5.
The partition of rat erythrocytes between the top phase and interface of aqueous poly(ethylene glycol)-dextran two-phase systems containing 0.15 M NaCl and 0.01 M sodium phosphate depends on the association of the cells with microscopic globules of dextran that persist in the poly(ethylene glycol)-rich top phase after the horizontal interface between the two phases has formed. 相似文献
6.
The partitioning of proteases expressed by Penicillium restrictum from Brazilian Savanna in an inexpensive aqueous two-phase system composed of poly (ethylene glycol) (PEG) and sodium polyacrylate (NaPA) was studied. The effects of PEG molecular weight and concentration, as well as NaPA concentration and the concentration of fermented broth on protease partitioning were studied. Partitioning into the top PEG-rich phase was increased in systems with smaller PEG-molecular weight, higher NaPA concentration and lower PEG concentration. For most systems studied, purification has been achieved by directing the biomolecule partition to the opposite phase of the other proteins, providing the enzyme purification. The highest partition coefficient was obtained using 20 wt% NaPA, 4 wt% PEG 2000 g mol −1 and 45 wt% fermented broth, leading to a purification factor of 1.98 and partition coefficient of 37.73. The system showed high mass balances and yield, indicating enzyme stability and applicability for industrial processes. The partitioning results using the PEG/NaPA/NaCl system show that this method could be used to purify or concentrate protease from fermented broth. 相似文献
7.
Partition coefficients in biphasic mixtures of poly(ethylene glycol) and Dextran are compared to cell surface energies obtained from contact angles of each liquid phase on cell layers. Linear relationships are observed between these two independent measurements for a variety of bacterial cells. The results demonstrate the importance of interfacial phenomena and contact angles in the phase-partition process. 相似文献
8.
New aqueous liquid-liquid two-phase systems based on bovine serum albumin and sodium thiocyanate in combination with either poly(vinyl alcohol) or poly(ethylene glycol) were investigated. Phase diagrams are presented. Lactate dehydrogenase and some mitochondrial enzymes were partitioned in the systems. All the phase components used influenced, either positively or negatively, the activity of lactate dehydrogenase. The enzymes showed a strong preference for the albumin phase. Possible scientific and biotechnological uses are discussed. 相似文献
10.
Culture medium made hypertonic by the addition of osmotic stabilizers such as sucrose, poly(ethylene glycol), dextran and bovine serum albumin protected against changes in morphology and plasma membrane permeability induced by Clostridium perfringes enterotoxin. The protection did not appear to be due to binding inhibition. Results of these studies support an osmotic disruption mechanism for the action of the enterotoxin. A comprehensive model of the enterotoxin's action based on an osmotic disruption mechanism is proposed. 相似文献
11.
The K-562 cell line is a culture of human leukemia stem cells originally derived from a patient with chronic myelogenous leukemia
in blast crisis. We have subjected such cells, in the log phase of growth, to countercurrent distribution in a charge-sensitive
dextran-polyethylene glycol aqueous-phase system, a method that fractionates cells on the basis of subtle differences in their
surface properties, and found that: (1) The cell population is heterogeneous since it is composed of cells with different
partition ratios. (2) There is a correlation between increasing cell partition ratios and increasing cell electrophoretic
mobilities. (3) Cells under different parts of the distribution curve have dissimilar ratios of cells in different parts of
the cell cycle, a phenomenon that may, at least partially, be the basis for the subfractionation of these cells. There is
a clear tendency for cells in G 0+G 1+early S to decrease and for those in late S+G 2+M to increase with increasing partition ratios. (4) Sialic acid is a major surface charge component of the cells as evidenced
by a dramatic drop in their partition ratios after treatment with neuraminidase. 相似文献
12.
The effects of low temperature (−18°C) on the stability and partitioning of some glycolytic enzymes within an aqueous two-phase system were studied. The enzymes were phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase present in a crude extract of bakers' yeast. The partitioning of pure phosphofructokinase, isolated from bakers' yeast, was also examined. The two-phase systems were composed of water, poly(ethylene glycol), dextran, and ethylene glycol and buffer. The influence on the partitioning of the presence of ethylene glycol, phenylmethylsulfonyl fluoride and poly(ethylene glycol)-bound Cibacron Blue F3G-A was investigated at −18, 0 and (in some cases) 20°C. The presence of ethylene glycol, phase polymers and low temperature stabilized all three enzyme activities. Cibacron Blue, an affinity ligand for phosphofructokinase, increased its partitioning into the upper phase with decreasing temperature. Depending on the conditions, various amounts of the enzymes were recovered at the interface, also in systems not containing ethylene glycol. The implications of the observed effects on the use of aqueous two-phase systems for the extraction and fractionation of proteins are discussed. 相似文献
13.
Partitioning in charge-sensitive dextran-poly(ethylene glycol) aqueous phase systems reveals that fixation with even small concentrations of glutaraldehyde (e.g., 0.1% w/v) changes the surface properties of cells. While fixation with larger concentrations of glutaraldehyde (i.e., 1.85%) increases erythrocyte partition ratios, the effect of lower glutaraldehyde concentrations on the partition ratios appears to be species-specific. The differential effect of glutaraldehyde on rat reticulocytes and erythrocytes indicates that fixation is also cell-dependent. These data, together with the previous report that glutaraldehyde fixation does not change the characteristic relative partition ratios of rat mature erythrocytes of different cell ages, suggest that the nature and extent of glutaraldehyde alteration of cell surfaces must, in each case, be empirically evaluated. 相似文献
14.
A method for protein and cell patterning on polyelectrolyte-coated surfaces using simple micromolding in capillaries (MIMIC) is described. MIMIC produced two distinctive regions. One contained polyethylene glycol (PEG) microstructures fabricated using photopolymerization that provided physical, chemical, and biological barriers to the nonspecific binding of proteins, bacteria, and fibroblast cells. The second region was the polyelectrolyte (PEL) coated surface that promoted protein and cell immobilization. The difference in surface functionality between the PEL region and background PEG microstructures resulted in simple patterning of biomolecules. Fluorescein isothiocyanate-tagged bovine serum albumin, E. coli expressing green fluorescence protein (GFP), and fibroblast cells were successfully bound to the exposed PEL surfaces at micron scale. Compared with the simple adsorption of protein, fluorescence intensity was dramatically improved (by about six-fold) on the PEL-modified surfaces. Although animal cell patterning is prerequisite for adhesive protein layer to survive on desired area, the PEL surface without adhesive proteins provides affordable microenvironment for cells. The simple preparation of functionalized surface but universal platform can be applied to various biomolecules such as proteins, bacteria, and cells. 相似文献
15.
In contrast to the widely used method of electroporation, the method of soft perforation of lipid bilayers is proposed. It is based on the structural rearrangement of the lipid bilayer formed from disaturated phospholipids at the temperature of the phase transition from the liquid crystalline state to the gel state. This allows us to obtain a lipid pore population without the use of a strong electric field. It is shown that the planar lipid bilayer membrane (pBLM) formed from dipalmitoylphosphatidylcholine in 1 M LiCl aqueous solution exhibits the appearance of up to 50 lipid pores per 1 mm 2 of membrane surface, with an average single pore conductivity of 31±13 nS. The estimation of a single pore radius carried out with water-soluble poly(ethylene glycol)s (PEGs) showed that the average pore radius ranged between 1.0–1.7 nm. It was found experimentally that PEG-1450, PEG-2000, and PEG-3350 should be in a position to block the single pore conductivity completely, while PEG-6000 fully restored the ionic conductivity. The similarity of these PEG effects to ionic conductivity in protein pores makes it possible to suggest that the partition of the PEG molecules between the pore and the bulk solution does not depend on the nature of the chemical groups located in the pore wall. 相似文献
16.
Safety concerns related to the increasing and widespread application of synthetic coloring agents have increased the demand for natural colorants. Fungi have been employed in the production of novel and safer colorants. In order to obtain the colorants from fermented broth, suitable extraction systems must be developed. Aqueous two‐phase polymer systems (ATPPS) offer a favorable chemical environment and provide a promising alternative for extracting and solubilizing these molecules. The aim of this study was to investigate the partitioning of red colorants from the fermented broth of Penicillium purpurogenum using an ATPPS composed of poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA). Red colorants partitioned preferentially to the top (PEG‐rich phase). In systems composed of PEG 6,000 g/mol/NaPA 8,000 g/mol, optimum colorant partition coefficient (K C) was obtained in the presence of NaCl 0.1 M (K C = 10.30) while the PEG 10,000 g/mol/NaPA 8,000 g/mol system in the presence of Na 2SO 4 0.5 M showed the highest K C (14.78). For both polymers, the mass balance (%MB) and yield in the PEG phase (%η TOP) were close to 100 and 79%, respectively. The protein selectivity in all conditions evaluated ranged from 2.0–3.0, which shows a suitable separation of the red colorants and proteins present in the fermented broth. The results suggest that the partitioning of the red colorants is dependent on both the PEG molecular size and salt type. Furthermore, the results obtained support the potential application of ATPPS as the first step of a purification process to recover colorants from fermented broth of microorganisms. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1295–1304, 2015 相似文献
17.
Rat reticulocytes undergo charge-associated surface changes, detectable by cell partitioning in charged dextran-poly(ethylene glycol) aqueous phase systems, as they become mature erythrocytes. Young reticulocytes have a lower partition coefficient, i.e., quantity of cells in the top phase as a percentage of total cells added, than do mature erythrocytes. Sialic acid is the main charge-bearing group on red blood cells and, in the case of the rat, most of the sialic acid can be removed by treatment of the cells with neuraminidase ( Vibrio cholerae). By combining isotopic 59Fe-labeling of reticulocytes with countercurrent distribution of the entire red blood cell population in charged dextran-poly(ethylene glycol) aqueous phases we have now studied the relative effect of neuraminidase-treatment on rat reticulocytes and mature erythrocytes. It was found that neuraminidase-treatment (a) does not eliminate surface differences, detectable by partitioning, between rat reticulocytes and erythrocytes and (b) reduces the partition coefficient of mature erythrocytes to a greater extent than the partition coefficient of reticulocytes indicating a differential effect of this enzyme on the two cell populations. 相似文献
18.
The purification of clavulanic acid (CA), which is an important β-lactam antibiotic produced by submerged cultivation of Streptomyces clavuligerus, was studied through the use of phosphate and polyethylene glycol-based aqueous two-phase systems. The parameters’ effect
on the yield and purification was evaluated through an experimental design and the preliminary results showed that the polyethylene
molecular mass and tie-line length and phase volume ratio exerted the strongest effect on the yield and distribution coefficient
in the range tested. In addition, the response surface methodology was used to optimize the distribution coefficient, yield,
and purification factor. The optimal conditions of yield and purification factor are in the regions where polyethylene has
a low molecular mass, pH close to the isoelectric point, and lower top phase volume. A 100% yield and a 1.5-fold purification
factor are obtained when extracting CA by maximizing the conditions of an aqueous two-phase system. 相似文献
19.
Aqueous solutions of dextran and of poly(ethylene glycol) when mixed give rise to two-phase systems useful in separating cells, on the basis of their surface properties, by partitioning. Depending on whether salts with unequal or equal affinity for the two phases are chosen, phases with or without an electrostatic potential difference between the phases are obtained. At appropriate polymer concentrations the former yield cell partition coefficients (i.e., the quantity of cells in the top phase as a percentage of total cells added) based on charge-associated surface properties while the latter reflect membrane lipid-related parameters. With increasing cell age, rat erythrocytes have diminishing partition coefficients in both charged and uncharged phases. Using the elevated aspartate aminotransferase levels of younger red cells as a marker, we have not found that young mature erythrocytes of human do not have the highest partition coefficient in the red cell population as they do in rat. Experiments with isotopically labeled dog red cells yield results similar to those found with human erythrocytes. Furthermore, density-separated young and old red cells from human give overlapping countercurrent distribution curves. Finally, countercurrent distribution of human red blood cells followed by pooling of cells from the left and right ends of the distribution and subjection of these cells to a redistribution gives curves that overlap with each other and with the original countercurrent distribution. This indicates that not only are human red cells not subfractionated based on possible age-related surface alterations, but also that they are not subfractionated by partitioning based on any surface parameter. These results are consistent with our previous findings that membrane sialic acid/hemoglobin absorbance is essentially constant through the extraction train after countercurrent distribution of human erythrocytes in a charged phase system; and with the recent reports of others that there is no difference in electrophoretic mobility between human young and old red cells. 相似文献
20.
Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep‐free poly (1,3‐trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue‐derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF‐β1 for 7d. Phenotype and function were assessed by qRT‐PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non‐differentiated and pre‐differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT‐PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF‐β1‐driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre‐differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well‐aligned ASC‐derived SMC which deposited ECM. Under the same conditions, pre‐differentiated ASC‐derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF‐β1 pre‐stimulation to generate SMC from ASC and that pre‐differentiated ASC keep their SMC phenotype with increased expression of SMC markers. 相似文献
|