首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cell lysate prepared from MA104 cells that had been infected with human rotavirus KUN strain (HRV-KUN) contained a 35-kilodalton protein capable of binding to MA104 cells. The binding of the 35-kilodalton protein was inhibited by a serotype 2-specific antiserum but not by antisera to other serotypes. Not only trypsin-treated, infectious HRV-KUN but also untreated, noninfectious virions effectively competed with the 35-kilodalton protein for the same cell surface binding sites. One monoclonal anti-VP7 (AH6) absorbed the 35-kilodalton protein from the HRV-KUN-infected cell lysate, whereas another monoclonal anti-VP7 (S2-2G10) inhibited the virions to compete with the 35-kilodalton protein for the cell surface binding sites. Both anti-VP7 (S2-2G10) and anti-VP3 (K-1532, K-376) monoclonal antibodies had the virus-neutralization activity, but only anti-VP7 inhibited virus adsorption. On the other hand, anti-VP3 monoclonal antibodies were capable of completely inhibiting the infection of preadsorbed HRV-KUN as long as virions were not yet internalized. Subsequent studies with [35S]methionine-labeled and purified HRV-KUN showed that not only trypsin-treated, infectious virions but also untreated, noninfectious virions were capable of efficient target cell binding and internalization. The internalization modes of these two HRV-KUN preparations were, however, quite different. Only the components of the inner capsid were internalized from trypsin-treated virions, whereas no such selective internalization was seen with untreated virions. Furthermore, anti-VP3 inhibited this selective internalization of the inner capsid from the infectious virions. From these results we conclude that VP7 is the HRV-KUN cell attachment protein and that adsorption of HRV-KUN via VP7 is independent of trypsin treatment, whereas the limited cleavage of VP3 by trypsin, which is essential for the development of HRV-KUN infectivity, is needed for the selective internalization of the inner capsid components, a process that is apparently essential for HRV-KUN infection.  相似文献   

2.
The purpose of this study was to determine which regions of the VP6 protein of the murine rotavirus strain EDIM are able to elicit protection against rotavirus shedding in the adult mouse model following intranasal (i.n.) immunization with fragments of VP6 and a subsequent oral EDIM challenge. In the initial experiment, the first (fragment AB), middle (BC), or last (CD) part of VP6 that was genetically fused to maltose-binding protein (MBP) and expressed in Escherichia coli was examined. Mice (BALB/c) immunized with two 9-microg doses of each of the chimeras and 10 microg of the mucosal adjuvant LT(R192G) were found to be protected against EDIM shedding (80, 92, and nearly 100% reduction, respectively; P 相似文献   

3.
Genomic segment 4 of the porcine Gottfried strain (serotype 4) of porcine rotavirus, which encodes the outer capsid protein VP4, was sequences, and its deduced amino acid sequence was analyzed. Amino acid homology of the porcine rotavirus VP4 to the corresponding protein of asymptomatic or symptomatic human rotaviruses representing serotypes 1 to 4 ranged from 87.1 to 88.1% for asymptomatic strains and from 77.5 to 77.8% for symptomatic strains. Amino acid homology of the Gottfried strain to simian rhesus rotavirus, simian SA11 virus, bovine Nebraska calf diarrhea virus, and porcine OSU strains ranged from 71.5 to 74.3%. Antigenic similarities of VP4 epitopes between the Gottfried strain and human rotaviruses were detected by a plaque reduction neutralization test with hyperimmune antisera produced against the Gottfried strain or a Gottfried (10 genes) x human DS-1 rotavirus (VP7 gene) reassortant which exhibited serotype 2 neutralization specificity. In addition, a panel of six anti-VP4 monoclonal antibodies capable of neutralizing human rotaviruses belonging to serotype 1, 3, or 4 was able to neutralize the Gottfried strain. These observations suggest that the VP4 outer capsid protein of the Gottfried rotavirus is more closely related to human rotaviruses than to animal rotaviruses.  相似文献   

4.
cDNA clones representing the VP8 and VP5 subunits of VP4 of symptomatic human rotavirus strain KU (VP7 serotype 1 and VP4 serotype 1A) or DS-1 (VP7 serotype 2 and VP4 serotype 1B) or asymptomatic human rotavirus strain 1076 (VP7 serotype 2 and VP4 serotype 2) were constructed and inserted into the pGEMEX-1 plasmid and expressed in Escherichia coli. Immunization of guinea pigs with the VP8 or VP5 protein of each strain induced antibodies that neutralized the rotavirus from which the VP4 subunits were derived. In a previous study (M. Gorziglia, G. Larralde, A.Z. Kapikian, and R. M. Chanock, Proc. Natl. Acad. Sci. USA 87:7155-7159, 1990), three distinct serotypes and one subtype of VP4 outer capsid protein were identified among 17 human rotavirus strains that had previously been assigned to five distinct VP7 serotypes. The results obtained by cross-immunoprecipitation and by neutralization assay with antisera to the VP8- and VP5-expressed proteins suggest that the VP8 subunit of VP4 contains the major antigenic site(s) responsible for serotype-specific neutralization of rotavirus via VP4, whereas the VP5 subunit of VP4 is responsible for much of the cross-reactivity observed among strains that belong to different VP4 serotypes.  相似文献   

5.
The 38,200-molecular weight (unreduced)/41,900-molecular-weight (reduced) glycoprotein of bovine rotavirus, isolate C486, was identified as the major neutralizing antigen. This glycoprotein as well as the corresponding glycoprotein of another bovine rotavirus serotype also specifically attached to cell monolayers under normal conditions for virus adsorption in vitro. Further support for this glycoprotein being directly responsible for virus attachment to cells was that (i) infectious virus of both serotypes could compete with the C486 glycoprotein for cell surface receptors, and (ii) neutralizing monospecific antiserum and neutralizing monoclonal antibodies directed toward the glycoprotein could block this virus-cell interaction. Preliminary epitope mapping of the glycoprotein with monoclonal antibodies further localized the neutralization-adsorption domain to a peptide with an approximate molecular weight of 14,000. The effect of two protein modifications, glycosylation and disulfide bridging, on the reactivity of this peptide with antibodies and cell surface receptors was investigated. It was demonstrated that, whereas glycosylation did not appear to affect these reactivities, disulfide bridging seemed to be essential.  相似文献   

6.
7.
Full-length cDNA of the VP4 gene of porcine rotavirus strain OSU was cloned into adenovirus type 5 (Ad5) downstream of the E3 promoter. The plaque-purified recombinant (Ad5-OSU VP4) expressed apparently authentic VP4 rotavirus outer capsid protein. The protein had the same molecular size (85 kDa) and electrophoretic mobility as did native OSU VP4 and was immunoprecipitated by a polyclonal antiserum raised to OSU VP4. Cotton rats that possessed prechallenge rotavirus antibodies that may have been acquired either passively or actively developed neutralizing antibodies against the OSU strain following intranasal administration of the live Ad5-OSU VP4 recombinant. The neutralizing activity was enhanced by a parenteral booster injection with baculovirus-expressed OSU VP4 antigen. In addition, a high titer of neutralizing antibodies was induced by parenteral administration of the latter antigen and subsequent intranasal administration of the Ad5-OSU VP4 recombinant. These observations indicate that the VP4 outer capsid protein of a rotavirus strain can be expressed by a recombinant adenovirus vector. This approach warrants further exploration for immunization against rotavirus disease.  相似文献   

8.
J T Patton  J Hua    E A Mansell 《Journal of virology》1993,67(8):4848-4855
Because the rotavirus spike protein VP4 contains conserved Cys residues at positions 216, 318, 380, and 774 and, for many animal rotaviruses, also at position 203, we sought to determine whether disulfide bonds were structural elements of VP4. Electrophoretic analysis of untreated and trypsin-treated rhesus rotavirus (RRV) and simain rotavirus SA11 in the presence and absence of the reducing agent dithioerythritol revealed that VP4 and its cleavage fragments VP5* and VP8* possessed intrachain disulfide bonds. Given that the VP8* fragments of RRV and SA11 contain only two Cys residues, those at positions 203 and 216, these data indicated that these two residues were covalently linked. Electrophoretic examination of truncated species of VP4 and VP4 containing Cys-->Ser mutations synthesized in reticulocyte lysates provided additional evidence that Cys-203 and Cys-216 in VP8* of RRV were linked by a disulfide bridge. VP5* expressed in vitro was able to form a disulfide bond analogous to that in the VP5* fragment of trypsin-treated RRV. Analysis of a Cys-774-->Ser mutant of VP5* showed that, while it was able to form a disulfide bond, a Cys-318-->Ser mutant of VP5* was not. These results indicated that the VP4 component of all rotaviruses, except B223, contains a disulfide bond that links Cys-318 and Cys-380 in the VP5* region of the protein. This bond is located between the trypsin cleavage site and the putative fusion domain of VP4. Because human rotaviruses lack Cys-203 and, hence, unlike many animal rotaviruses cannot possess a disulfide bond in VP8*, it is apparent that VP4 is structurally variable in nature, with human rotaviruses generally containing one disulfide linkage and animal rotaviruses generally containing two such linkages. Considered with the results of anti-VP4 antibody mapping studies, the data suggest that the disulfide bond in VP5* exists within the 2G4 epitope and may be located at the distal end of the VP4 spike on rotavirus particles.  相似文献   

9.
10.
A baculovirus-expressed VP4 protein derived from the simian rhesus rotavirus (RRV) was used to parenterally immunize murine dams. VP4-immunized dams developed high levels of neutralizing antibodies against RRV and low levels of cross-reactive neutralizing antibodies against human strains Wa, ST3, and S2 and animal strains SA-11, NCDV, and Eb. Newborn mice suckled on VP4-immunized dams were protected against a virulent challenge dose of the simian strain RRV and against murine rotavirus Eb. The cross-reactive nature of the serum-neutralizing response generated by VP4 immunization and the protective efficacy of the immunization suggest that recombinant-expressed VP4 proteins should be considered as viable vaccine candidates.  相似文献   

11.
Rotavirus morphogenesis starts in intracellular inclusion bodies called viroplasms. RNA replication and packaging are mediated by several viral proteins, of which VP1, the RNA-dependent RNA polymerase, and VP2, the core scaffolding protein, were shown to be sufficient to provide replicase activity in vitro. In vivo, however, viral replication complexes also contain the nonstructural proteins NSP2 and NSP5, which were shown to be essential for replication, to interact with each other, and to form viroplasm-like structures (VLS) when coexpressed in uninfected cells. In order to gain a better understanding of the intermediates formed during viral replication, this work focused on the interactions of NSP5 with VP1, VP2, and NSP2. We demonstrated a strong interaction of VP1 with NSP5 but only a weak one with NSP2 in cotransfected cells in the absence of other viral proteins or viral RNA. By contrast, we failed to coimmunoprecipitate VP2 with anti-NSP5 antibodies or NSP5 with anti-VP2 antibodies. We constructed a tagged form of VP1, which was found to colocalize in viroplasms and in VLS formed by NSP5 and NSP2. The tagged VP1 was able to replace VP1 structurally by being incorporated into progeny viral particles. When applying anti-tag-VP1 or anti-NSP5 antibodies, coimmunoprecipitation of tagged VP1 with NSP5 was found. Using deletion mutants of NSP5 or different fragments of NSP5 fused to enhanced green fluorescent protein, we identified the 48 C-terminal amino acids as the region essential for interaction with VP1.  相似文献   

12.
Clearance of chronic murine rotavirus infection in SCID mice can be demonstrated by adoptive transfer of immune CD8+ T lymphocytes from histocompatible donor mice immunized with a murine homotypic rotavirus (T. Dharakul, L. Rott, and H.B. Greenberg, J. Virol 64:4375-4382, 1990). The present study focuses on the protein specificity and heterotypic nature of cell-mediated clearance of chronic murine rotavirus infection in SCID mice. Heterotypic cell-mediated clearance was demonstrated in SCID mice infected with EDIM (murine) rotavirus after adoptive transfer of CD8+ T lymphocytes from BALB/c mice that were immunized with a variety of heterologous (nonmurine) rotaviruses including Wa (human, serotype 1), SA11 and RRV (simian, serotype 3), and NCDV and RF (bovine, serotype 6). This finding indicates the serotypic independence of T-cell-mediated rotavirus clearance. To further identify the rotavirus proteins that are capable of generating CD8+ T cells that mediate virus clearance, donor mice were immunized with SF-9 cells infected with a baculovirus recombinant expressing one of the following rotavirus proteins: VP1, VP2, NS53 (from RF), VP4, VP7, NS35 (from RRV), VP6, and NS28 (from SA11). SCID mice stopped shedding rotavirus after receiving CD8+ T cells from mice immunized with VP1, VP4, VP6, and VP7 but not with VP2, NS53, NS35, NS28, or wild-type baculovirus. These results suggest that heterotypic cell-mediated clearance of rotavirus in SCID mice is mediated by three of the major rotavirus structural proteins and by a putative polymerase protein.  相似文献   

13.
Natural infection by very similar strains of rotavirus during the 1988-1989 rotavirus season in Cincinnati, Ohio, provided complete protection of young children against subsequent rotavirus illnesses for a period of at least 2 years. Using this limited strain variability, we characterized the association between the titers of antibody to either the VP4 or the VP7 neutralization protein and protection against subsequent rotavirus disease. This was done by using reassortants that contained only one of the two rotavirus neutralization proteins of 89-12, a culture-adapted isolate representative of the protective rotavirus strains. The other neutralization protein in these reassortants was derived from a heterologous rotavirus (WC3 or EDIM) to which the infected subjects made little or no neutralizing antibody (titers, < or = 20). The geometric mean titer (GMT) of antibody to 89-12 in convalescent-phase sera from the 21 subjects analyzed was 2,323. The GMT of antibody to a reassortant (strain WC-4) that contained the VP7 protein of 89-12 and VP4 of WC3 was 387. In contrast, the GMT of antibody to a reassortant (strain EDIM-7) that contained the VP4 protein of 89-12 and the VP7 protein of EDIM was 1,078. Thus, the major neutralization response was directed against VP4 rather than VP7, a finding that has important implications for development of appropriate rotavirus vaccines.  相似文献   

14.
Three cDNA clones comprising the VP8 subunit of the VP4 of human rotavirus strain KU (VP7 serotype G1; VP4 serotype P1A) G1 were constructed. The corresponding encoded peptides were designated according to their locations in the VP8 subunit as A (amino acids 1 to 102), B (amino acids 84 to 180), and C (amino acids 150 to 246 plus amino acids 247 to 251 from VP5). In addition, cDNA clones encoding peptide B of the VP8 subunit of the VP4 gene from human rotavirus strains DS-1 (G2; P1B) and 1076 (G2; P2) were also constructed. These DNA fragments were inserted into plasmid pGEMEX-1 and expressed in Escherichia coli. Western immunoblot analysis using antisera to rotavirus strains KU (P1A), Wa (P1A), DS-1 (P1B), 1076 (P2), and M37 (P2) demonstrated that peptides A and C cross-reacted with heterotypic human rotavirus VP4 antisera, suggesting that these two peptides represent conserved epitopes in the VP8 subunit. In contrast, peptide B appears to be involved in the VP4 serotype and subtype specificities, because it reacted only with the corresponding serotype- and subtype-specific antiserum. Antiserum raised against peptide A, B, or C of strain KU contained a lower level of neutralizing activity than did that induced by the entire VP8 subunit. In addition, the serotype-specific neutralizing activity of anti-KU VP8 serum was ablated after adsorption with the KU VP8 protein but not with a mixture of peptides A, B, and C of strain KU, suggesting that most of the serotype-specific epitopes in the VP8 subunit are conformational and are dependent on the entire amino acid sequence of VP8.  相似文献   

15.
Gastric parietal cells secrete hydrochloric acid in stomach. Because the secreted HCl solution is isotonic with the plasma fluid, it should accompany the water transport across the membranes of parietal cells. Aquaporins (AQPs) are water channel proteins that play the central role in the cellular handling of water in various mammalian tissues. Using immunocytochemistry, we found that AQP4 was expressed only in parietal cells of rat gastric mucosa. Immunogold electron microscopy study further demonstrated that AQP4 was mostly localized at the basal membrane of parietal cells. In the basal membrane, AQP4 was prominently enriched on the portion contacting with the basement membrane surrounding gastric glands. These results suggest that the contact between basement membrane and basal membrane may generate the signal involved in the targeting of AQP4 in gastric parietal cells.  相似文献   

16.
17.
18.
Glycosylation and translocation of the simian rotavirus protein VP7, a resident ER protein, does not occur co-translationally in vivo. In pulse-chase experiments in COS cells, nonglycosylated VP7 was still detectable after a 25-min chase period, although the single glycosylation site was only 18 residues beyond the signal peptide cleavage site. After labeling, glycosylated and nonglycosylated VP7 was recovered in microsomes but the latter was sensitive to trypsin (i.e., the nascent protein became membrane associated) but most of it entered the ER posttranslationally because of a rate-limiting step early in translocation. In contrast with the simian protein, bovine VP7 was glycosylated and translocated rapidly. Thus, delayed translocation per se was not required for retention of VP7 in the ER. By constructing hybrid proteins, it was further shown that the signal peptide together with residues 64-111 of the simian protein caused delayed translocation. The same sequences were also necessary and sufficient for retention of simian VP7 in the ER. The data are consistent with the idea that certain proteins are inserted into the ER membrane in a loop configuration.  相似文献   

19.
Foot-and-mouth disease virus structural protein VP1 elicits neutralizing and protective antibody and is probably the viral attachment protein which interacts with cellular receptor sites on cultured cells. To study the relationships between epitopes on the molecule related to neutralization and cell attachment, we tested monoclonal antibodies prepared against type A12 virus, isolated A12 VP1, and a CNBr-generated A12 VP1 fragment for neutralization and effect on viral absorption. The antibodies selected for analysis neutralized viral infectivity with varying efficiencies. One group of antibodies caused a high degree of viral aggregation and inhibited the adsorption of virus to cells by 50 to 70%. A second group of antibodies caused little or no viral aggregation but inhibited the adsorption of virus to cells by 80 to 90%. One antibody, which is specific for the intact virion, caused little viral aggregation and had no effect on the binding of virus to specific cellular receptor sites. Thus, at least three antigenic areas on the surface of foot-and-mouth disease virus which were involved in neutralization were demonstrated. One of the antigenic sites appears to have been responsible for interaction with the cellular receptor sites on the surface of susceptible cells.  相似文献   

20.
The N-terminal region of VP1 of swine vesicular disease virus (SVDV) is highly antigenic in swine, despite its internal location in the capsid. Here we show that antibodies to this region can block infection and that allowing the virus to attach to cells increases this blockage significantly. The results indicate that upon binding to the cell, SVDV capsid undergoes a conformational change that is temperature independent and that exposes the N terminus of VP1. This process makes this region accessible to antibodies which block virus entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号