首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adoptive transfer of TCR gene-modified T cells has been proposed as an attractive approach to target tumors for which it is difficult or impossible to induce strong tumor-specific T cell responses by vaccination. Whereas the feasibility of generating tumor Ag-specific T cells by gene transfer has been demonstrated, the factors that determine the in vivo effectiveness of TCR-modified T cells are largely unknown. We have analyzed the value of a number of clinically feasible strategies to enhance the antitumor potential of TCR modified T cells. These experiments reveal three factors that contribute greatly to the in vivo potency of TCR-modified T cells. First, irradiation-induced host conditioning is superior to vaccine-induced activation of genetically modified T cells. Second, increasing TCR expression through genetic optimization of TCR sequences has a profound effect on in vivo antitumor activity. Third, a high precursor frequency of TCR modified T cells within the graft is essential. Tumors that ultimately progress in animals treated with this optimized regimen for TCR-based adoptive cell transfer invariably display a reduced expression of the target Ag. This suggests TCR gene therapy can achieve a sufficiently strong selective pressure to warrant the simultaneous targeting of multiple Ags. The strategies outlined in this study should be of value to enhance the antitumor activity of TCR-modified T cells in clinical trials.  相似文献   

2.
Regulatory NK cells suppress antigen-specific T cell responses   总被引:1,自引:0,他引:1  
The immune system has a variety of regulatory/suppressive processes, which are decisive for the development of a healthy or an allergic immune response to allergens. NK1 and NK2 subsets have been demonstrated to display counterregulatory and provocative roles in immune responses, similar to Th1 and Th2 cells. T regulatory cells suppressing both Th1 and Th2 responses have been the focus of intensive research during the last decade. In this study, we aimed to investigate regulatory NK cells in humans, by characterization of NK cell subsets according to their IL-10 secretion property. Freshly purified IL-10-secreting NK cells expressed up to 40-fold increase in IL-10, but not in the FoxP3 and TGF-beta mRNAs. PHA and IL-2 stimulation as well as vitamin D3/dexamethasone and anti-CD2/CD16 mAbs are demonstrated to induce IL-10 expression in NK cells. The effect of IL-10+ NK cells on Ag-specific T cell proliferation has been examined in bee venom major allergen, phospholipase A2- and purified protein derivative of Mycobecterium bovis-induced T cell proliferation. IL-10+ NK cells significantly suppressed both allergen/Ag-induced T cell proliferation and secretion of IL-13 and IFN-gamma, particularly due to secreted IL-10 as demonstrated by blocking of the IL-10 receptor. These results demonstrate that a distinct small fraction of NK cells display regulatory functions in humans.  相似文献   

3.
In vivo and in vitro, murine peripheral T cells can suppress or "veto" the activation of cytotoxic T lymphocytes directed against antigens presented by those T cells. This suppression is antigen-specific and H-2-restricted. The recognition event initiating this suppression appears to be unidirectional; precursors of cytotoxic T lymphocytes recognize the antigen-bearing veto cell and are thereby inactivated--the veto cell need not recognize the CTL precursor. We show here that 3/3 cytolytic T cell clones can exert veto activity in vitro on normal spleen cells which do not bear antigens the T cell clones can recognize. This suppression results in greatly diminished cytotoxic activity generated during a primary 5-day mixed lymphocyte culture against antigens which the veto cell expresses, but not against third-party antigens present in the same culture. In this same system, a noncytolytic T cell clone will not serve as a source of veto cells. Secondary cytotoxic responses are relatively resistant to the veto cell activity of cloned cytolytic T cells. The cloned veto cells do not suppress the generation of cytotoxic activity directed against antigens they recognize (and presumably carry over via antigen-specific receptors). Cold target competition during the cytotoxic assay has been eliminated as a possible mechanism for T cell clone-induced suppression, and suppression cannot be reversed by the addition to the mixed lymphocyte cultures of supernatants from concanavalin A-activated spleen cells. It is suggested that this mechanism of inactivating primary cytotoxic T lymphocyte responses could play an important role in the maintenance of self-tolerance and in the induction and maintenance of tolerance to allografts.  相似文献   

4.
Target cell lysis by sensitized cytolytic T lymphocytes (CTL) may be conveniently quantitated by 51Cr release. By fitting to the formula, P (% specfic release) = 100 (1-e-Nat) one obtains alpha, the relative frequency of CTL in N lymphoid cells. Using a microassay and murine sarcoma target cells, we observed an unexpected decrease in lysis whenever effectors obtained from a graft-vs-host reaction were tested at high concentrations. This inhibition was not observed with CTL generated by an MLC reaction. Inhibition could not be explained by nonspecific mechanical 'crowding', reutilization of released isotope, suppression of release from dead target cells, or the particular strain combination and target used. By modifying the formula to allow suppression of CTL by a stochastic cell-cell interaction with suppessor cell, we found that P = 100 (1-e-Nate-Ngamma) adequately fitted the data, where Ngamma is proportional to inhibitor content. An 18- to 24-hr incubation at 37 degrees C but not 4 degrees C allowed selective depletion or enrichment of inhibitors; in mixing experiments, both parameters Nalpha t and Ngamma behaved stoichiometrically as independent cellular properties. The inhibitor was resistant to concentrations of anti-T cell (RAMG) serum + complement which killed -TL. A similar inhibitor arose in vivo during an anti-tumour allograft response. The ability to quantitate CTL and inhibitor activities from titration curves provides a technique for studying the identity and mechanism of suppressor cells acting at the effector stage of cell-mediated immunity.  相似文献   

5.
It is clear that dendritic cells (DCs) are essential for priming of T cell responses against tumors. However, the distinct roles DC subsets play in regulation of T cell responses in vivo are largely undefined. In this study, we investigated the capacity of OVA-presenting CD4-8-, CD4+8-, or CD4-8+ DCs (OVA-pulsed DC (DC(OVA))) in stimulation of OVA-specific T cell responses. Our data show that each DC subset stimulated proliferation of allogeneic and autologous OVA-specific CD4+ and CD8+ T cells in vitro, but that the CD4-8- DCs did so only weakly. Both CD4+8- and CD4-8+ DC(OVA) induced strong tumor-specific CD4+ Th1 responses and fully protective CD8+ CTL-mediated antitumor immunity, whereas CD4-8- DC(OVA), which were less mature and secreted substantial TGF-beta upon coculture with TCR-transgenic OT II CD4+ T cells, induced the development of IL-10-secreting CD4+ T regulatory 1 (Tr1) cells. Transfer of these Tr1 cells, but not T cells from cocultures of CD4-8- DC(OVA) and IL-10-/- OT II CD4+ T cells, into CD4-8+ DC(OVA)-immunized animals abrogated otherwise inevitable development of antitumor immunity. Taken together, CD4-8- DCs stimulate development of IL-10-secreting CD4+ Tr1 cells that mediated immune suppression, whereas both CD4+8- and CD4-8+ DCs effectively primed animals for protective CD8+ CTL-mediated antitumor immunity.  相似文献   

6.
Murine T cells can mediate a potent negative allogeneic effect on the capacity of primed cells to develop the secondary antibody-forming cell response to hapten carrier in vitro. This effect is detected when T cells confront responding cells differing at the major H-2 locus. The allosuppression is relatively sensitive to mitomycin treatment and to irradiation. The T cells responsible for the inhibition of antibody formation appear to express the Ly2 but not the Ly1 alloantigen. The secondary response of spleen cells in culture is quite insensitive to positive allogeneic effects. The usefulness of this model in elucidating the mechanism of allosuppression and the relevance of such effects to studies involving genetic restriction on cell interactions is discussed.  相似文献   

7.
The contact-sensitizing haptens dinitrophenyl (DNP) and oxazalone (Ox) act as helper determinants for antibody responses to Thy-1 when conjugated to donor thymus cells. The helper effect is transferrable from primed to naive mice with spleen cells, producing specific augmentation of in vivo PFC responses to Thy-1. The helper cells are hapten-specific and require associative recognition of hapten and Thy-1, excluding a role for nonspecific B cell activation. The phenotype of the helper cells is Thy-1+ and Lyt-1+2-. Antigen-specific suppression could be readily generated by using an inoculum of DNP-modified syngeneic RBC. T cells from these suppressed donors (Ts) were shown to abolish the helper effects of TH in adoptive transfer experiments in vivo. These Ts were characterized as Thy-1+ and Lyt-1-2+. A requirement for MHC compatibility at the I-J subregion was necessary between the Ts and the recipient to obtain a transfer of suppression.  相似文献   

8.
In order to develop immunotherapy strategies that are based on eliciting immune responsiveness to the self-antigen, human carcinoembryonic antigen (CEA), we examined whether cytotoxic T lymphocyte (CTL) activity against CEA could be elicited in CEA-transgenic and nontransgenic mice. CEA-transgenic [C57BL/6-TGN(CEAGe)18FJP] and nontransgenic mice were primed with CEA-transfected syngeneic fibroblasts in combination with Corynebacterium parvum. Spleen cells from immunized mice were cultured with irradiated syngeneic MC-38 colon carcinoma cells transfected with CEA (MC-38.CEA) as stimulators prior to the measurement of CTL activity. Primed nontransgenic spleen cells showed augmented CTL activity against MC-38.CEA cells as compared with control parental MC-38 cells, nontransfected or transfected with vector only. Moreover, primed CEA transgenic spleen cells showed augmented CTL activity against MC-38.CEA cells that was similar to that observed in nontransgenic mice. All CTL clones derived from either transgenic or nontransgenic mice showed cross-reactivity with MC-38 cells expressing the CEA-related antigen, nonspecific cross-reacting antigen, but not biliary glycoprotein. CEA-specific CTL clones were not identified. Adoptive transfer of cloned CTL resulted in inhibition of MC-38.CEA but not MC-38.BGP tumor growth. Tumor cures were elicited in mice treated with a combination of cloned CTL and cyclophosphamide. Histopathological examination of CEA-expressing colons from either immunized mice or recipients of cloned CTL did not reveal any autoimmune reactions. These studies demonstrate that CTL recognizing cross-reactive class I epitopes on the CEA molecule can be induced in transgenic mice. The expression of these epitopes on tumor cells creates effective targets for CTL in vivo without inducing adverse reactions in CEA-expressing normal tissues. Since anti-CEA CTL have been generated in humans, CEA-transgenic mice may be a useful model to study vaccines that are based on CTL effector mechanisms. Received: 7 January 2000 / Accepted: 8 March 2000  相似文献   

9.
Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified the E3 ubiquitin ligase Peli1 as an important regulator of T cell metabolism and antitumor immunity. Peli1 ablation profoundly promotes tumor rejection, associated with increased tumor‐infiltrating CD4 and CD8 T cells. The Peli1‐deficient T cells display markedly stronger metabolic activities, particularly glycolysis, than wild‐type T cells. Peli1 controls the activation of a metabolic kinase, mTORC1, stimulated by both the TCR signal and growth factors, and this function of Peli1 is mediated through regulation of the mTORC1‐inhibitory proteins, TSC1 and TSC2. Peli1 mediates non‐degradative ubiquitination of TSC1, thereby promoting TSC1‐TSC2 dimerization and TSC2 stabilization. These results establish Peli1 as a novel regulator of mTORC1 and downstream mTORC1‐mediated actions on T cell metabolism and antitumor immunity.  相似文献   

10.
The nature of infected stimulator cells in the in vitro secondary cytotoxic T cell response to ectromelia infection was investigated. It was found that macrophages were better stimulator cells than spleen cells. B cells (Ig-positive cells) were superior to T cells (Ig-negative cells) both on a relative proportion and on a cell-to-cell basis. Concanavalin A and lipopolysaccharide-stimulated lymphocytes were also effective stimulator cells but appeared to be slightly inferior to spleen cells. Spleen cells depleted of Ia-positive cells were markedly inferior to normal spleen cells as stimulators. It was also found that primary and secondary cytotoxic T cells were largely Ia-negative. These findings are discussed in relation to the likely events during T cell responses to infection in vivo.  相似文献   

11.
Mice of the DBA/1 strain develop arthritis after immunization with native chick type II collagen. Although both a humoral and a cell-mediated response specific to type II collagen are associated with the disease, the underlying immunologic basis remains to be established. As an initial step to analyzing the involvement of cellular immunity in collagen-induced arthritis, we isolated and characterized T cell lines and clones specific to type II collagen. Two sets of T cell lines were obtained by limiting dilution. One set was found to react exclusively with denatured type II collagen, whereas the other set responded to both native and denatured type II collagen. The specificity of such T cells was demonstrated by their inability to respond to other soluble proteins such as type I collagen, HGG, KLH, or OVA. Cells from these lines recognized type II collagen only in an MHC (H-2q)-restricted fashion. Furthermore, the collagen-specific T cells were found to respond to type II collagens obtained from various species, including chick, bovine, and rat. Finally, each set of cells displayed a phenotype characteristic of T helper cells, namely Thy-1+, L3T4+, Lyt-2-.  相似文献   

12.
Cancer immunosurveillance failure is largely attributed to insufficient activation signals and dominant inhibitory stimuli for tumor Ag (TAg)-specific CD8 T cells. CD4 T cells have been shown to license dendritic cells (DC), thereby having the potential for converting CD8 T cell responses from tolerance to activation. To understand the potential cooperation of TAg-specific CD4 and CD8 T cells, we have characterized the responses of naive TCR transgenic CD8 and CD4 T cells to poorly immunogenic murine tumors. We found that whereas CD8 T cells sensed TAg and were tolerized, the CD4 T cells remained ignorant throughout tumor growth and did not provide help. This disparity in responses was due to normal TAg MHC class I cross-presentation by immature CD8alpha+ DC in the draining lymph node, but poor MHC class II presentation on all DC subsets due to selective inhibition by the tumor microenvironment. Thus, these results reveal a novel mechanism of cancer immunosubversion, in which inhibition of MHC-II TAg presentation on DC prevents CD4 T cell priming, thereby blocking any potential for licensing CD8alpha+ DC and helping tolerized CD8 T cells.  相似文献   

13.
After activation with anti-CD3, activated Th (THCD3), but not resting Th, fixed with paraformaldehyde induce B cell RNA synthesis when co-cultured with resting B cells. This activity is expressed by Th of both Th1 and Th2 subtypes, as well as a third Th clone that is not classified into either subtype. It is proposed that anti-CD3 activation of Th results in the expression of Th membrane proteins that trigger B cell cycle entry. Kinetic studies reveal that 4 to 8 h of activation with anti-CD3 is sufficient for ThCD3 to express B cell-activating function. However, activation of Th with anti-CD3 for extended periods of time results in reduced Th effector activity. Inhibition of Th RNA synthesis during the anti-CD3 activation period ablates the ability of ThCD3 to induce B cell cycle entry. This indicates that de novo synthesis of proteins is required for ThCD3 to express effector function. The ability of fixed ThCD3 to induce entry of B cell into cycle is not due to an increase in expression of CD3, CD4, LFA-1, ICAM-1, class I MHC or Thy-1. Other forms of Th activation (PMA and A23187, Con A) also induced Th effector function. Furthermore, purified plasma membranes from anti-CD3 activated, but not resting Th, induced resting B cells to enter cycle. The addition of IL-4, but not IL-2, IL-5, or IFN-gamma amplified the DNA synthetic response of B cells stimulated with PM from activated Th. Taken together these data indicate that de novo expression of Th surface proteins on activated Th is required for Th to induce B cell cycle entry into G1 and the addition of IL-4 is required for the heightened progression into S phase.  相似文献   

14.
Little is known regarding the participation of CD4+ CD25+ regulatory T cells (Treg) in TCD8+ responses. In this study, we show that Treg depletion via treatment with anti-CD25 mAb (PC61) significantly enhances TCD8+ responses to influenza A virus, vaccinia virus, and SV40-transformed cells induced by either direct priming or cross-priming. PC61 did not enhance TCD8+ responses in CD4-deficient mice, providing the initial demonstration that PC61 acts on a subset of TCD4+, and not on other cells that express either CD25 or a fortuitously cross-reactive Ag. We further show that Treg selectively suppress responses to the most immunodominant TCD8+ determinants in the three systems examined. Therefore, Treg influence TCD8 immunodominance hierarchies by moderating disparities in responses to different determinants.  相似文献   

15.
MLR in various combinations with class I H-2 disparity revealed that there are three patterns of MLR in the aspect of responding T subset (CD4 vs CD8) dominance. Irrespective of the CD8 vs CD4 dominance, a single i.v. administration of class I-disparate allogeneic spleen cells resulted in almost complete abrogation of anti-class I proliferative capacity of both CD4+ and CD8+ T cells in six combinations. The suppression of proliferative responses was correlated with the striking reduction in the ability to produce IL-2 upon stimulation with the relevant class I alloantigens. In contrast, i.v. presensitized recipient mice exhibiting only marginal MLR/Il-2 production could generate comparable magnitudes of anti-allo class I CTL as well as graft rejection responses to those induced by normal unpresensitized mice. The administration in vivo of anti-CD4 antibody along with the i.v. presensitization not only suppressed the generation of CTL responses by spleen cells but also induced appreciable prolongation of allo-class I-disparate skin grafts under conditions in which neither alone did it. These results demonstrate that 1) the suppression of graft rejection responses is not necessarily reflected on the reduction of MLR; 2) CD8+ CTL precursors responsible for graft rejection can be activated by either allo-class I-reactive CD8+ or CD4+ Th cells; 3) i.v. presensitization induces functional elimination of CD8+ and CD4+ proliferative/IL-2-producing T cells but not of CD8+ CTL precursors and CD4+ Th whose capacity is expressed by assistance of CTL induction but not by their own proliferation. Thus, this study illustrates the heterogeneity of class I alloantigen-reactive CD4+ T cells in the aspect of their capacity to proliferate themselves vs contribute to CTL induction as well as graft rejection.  相似文献   

16.
Thymic stromal cells are more efficient than similarly treated spleen cells for Ag presentation to Ag-specific, MHC-restricted T cell lines. Thymic stromal cells fail, however, to stimulate proliferation of autoreactive T cell lines. This failure to stimulate autoreactive T cells does not appear to be due to tolerance induction because thymic stroma does not interfere with subsequent stimulation by spleen cells. Moreover, the ability of thymic stromal cells to stimulate autoreactive T cells can be restored by addition of exogenous IL-1. This demonstrates that the specific self-determinants recognized by autoreactive T cells can be expressed on thymic stromal cells. Failure of stimulation by thymic stromal cells in the absence of exogenous IL-1 may reflect a difference in the physiologic requirements for activation of autoreactive T cells as compared to Ag-specific, MHC-restricted T cells.  相似文献   

17.
To study the effects of chronic Ag deposition in the airway mucosa on CD4(+) T cell priming and subsequent airway disease, transgenic mice were generated that expressed OVA under the control of the surfactant protein C promoter. CD4 T cells from these mice were tolerant to OVA but this was overcome among spleen CD4 T cells by crossing to OVA-specific DO11.10 TCR-transgenic mice. Lungs from the double-transgenic mice developed lymphocytic infiltrates and modest mucus cell hyperplasia. Infiltrating cells were unaffected by the absence of either Rag-1 or Stat6, although the latter deficiency led to the disappearance of mucus. In the lung of double-transgenic mice, a large number of Ag-specific CD4 T cells expressed CD25 and functioned as regulatory T cells. The CD25(+) CD4 T cells suppressed proliferation of CD25(-) CD4 T cells in vitro and inhibited type 2 immune responses induced by aerosolized Ags in vivo. Despite their ability to suppress allergic type 2 immunity in the airways, however, CD25(+) CD4 regulatory T cells had no effect on the development of bronchial hyperreactivity.  相似文献   

18.
Mice were primed subcutaneously with trinitrophenyl (TNP)-modified syngeneic spleen cells. Seven days later, spleen cells from these in vivo primed mice, or spleen cells from naive mice, were co-cultured with TNP-modified syngeneic cells. Spleen cells from the in vivo primed mice demonstrated augmented cytolytic T lymphocyte (CTL) activity. The spleens of these in vivo primed mice contained a population of radioresistant, antigen-specific, helper T cells. Specifically, spleen cells from these mice, after x-irradiation, were able to augment the in vitro CTL response of normal spleen cells to TNP-modified syngeneic cells.  相似文献   

19.
The effect of phospholipids on IFN-gamma production in mouse T cells was investigated. Phosphatidylserine (PS), which has a negatively charged head group, completely inhibited IFN-gamma production in splenic na?ve T cells and antigen-dependent IFN-gamma production in Th1 clone 42-6A cells, whereas other phospholipids, which have neutrally charged head group, had no effect. The structural requirements for IFN-gamma inhibitory effects by PS were investigated, and dimyristoyl-PS (C14: 0) and dipalmitoyl-PS (C16: 0) had no effect on IFN-gamma production, and interestingly, distearoyl-PS (18: 0) increased IFN-gamma production. Dioleoyl-PS (C18: 1), dilinoleoyl-PS (C18: 2), and oleoyl-lyso-PS (C18: 1) completely inhibited IFN-gamma production. To clarify this mechanism, we focused on the stability of IFN-gamma mRNA, and the treatment of splenic na?ve T cells with PS brought about 40% reductions in IFN-gamma mRNA expression in the presence of actinomycin D. Collectively, IFN-gamma inhibitory effects by PS are highly dependent on the molecular structure of PS and involve the decreasing of the stability of IFN-gamma mRNA.  相似文献   

20.
Novel antitumor peptide hormones and their effect on signal transduction.   总被引:2,自引:0,他引:2  
A series of novel gonadotropin releasing hormone (GnRH) and Somatostatin analogs have been developed in our laboratory and were screened for antiproliferative and signal transduction inhibitory effect. Our GnRH analog Folligen, had significant antitumor activity on DMBA induced mammary carcinomas in rats without blocking ovarian functions. The direct effect of Folligen and Buserelin has been compared on the human breast cancer cell line MDA-MB-231. Folligen was found to be more effective in inhibiting cell proliferation and significant differences were found in the signal transduction pathways activated by these analogs. Our novel Somatostatin analogs were screened for tyrosine kinase inhibition and for antiproliferative effect on human colon tumor cells and for growth hormone (GH) release inhibition in vitro and in vivo. The analog TT-2-50 was significantly more active inhibiting GH release in superfused rat pituitary cells and in vivo than native Somatostatin and it strongly inhibited tyrosine kinase and proliferation while it stimulated protein kinase C activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号